IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/11645.html
   My bibliography  Save this paper

General solutions for choice sets: The Generalized Optimal-Choice Axiom set

Author

Listed:
  • Andrikopoulos, Athanasios
  • Zacharias, Eleftherios

Abstract

In this paper we characterize the existence of best choices of arbitrary binary relations over non finite sets of alternatives, according to the Generalized Optimal-Choice Axiom condition introduced by Schwartz. We focus not just in the best choices of a single set X, but rather in the best choices of all the members of a family K of subsets of X. Finally we generalize earlier known results concerning the existence (or the characterization) of maximal elements of binary relations on compact subsets of a given space of alternatives.

Suggested Citation

  • Andrikopoulos, Athanasios & Zacharias, Eleftherios, 2008. "General solutions for choice sets: The Generalized Optimal-Choice Axiom set," MPRA Paper 11645, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:11645
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/11645/1/MPRA_paper_11645.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    2. Bossert, Walter & Sprumont, Yves & Suzumura, Kotaro, 2002. "Upper semicontinuous extensions of binary relations," Journal of Mathematical Economics, Elsevier, vol. 37(3), pages 231-246, May.
    3. Shafer, Wayne & Sonnenschein, Hugo, 1975. "Equilibrium in abstract economies without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 345-348, December.
    4. Duggan, John, 1999. "A General Extension Theorem for Binary Relations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 1-16, May.
    5. Yannelis, Nicholas C., 1985. "Maximal elements over non-compact subsets of linear topological spaces," Economics Letters, Elsevier, vol. 17(1-2), pages 133-136.
    6. J.C. R. Alcantud, 2002. "Characterization of the existence of maximal elements of acyclic relations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(2), pages 407-416.
    7. Peris, Josep E. & Subiza, Begona, 1994. "Maximal elements of not necessarily acyclic binary relations," Economics Letters, Elsevier, vol. 44(4), pages 385-388, April.
    8. Subiza, Begona & Peris, Josep E., 1997. "Numerical representation for lower quasi-continuous preferences," Mathematical Social Sciences, Elsevier, vol. 33(2), pages 149-156, April.
    9. Borglin, Anders & Keiding, Hans, 1976. "Existence of equilibrium actions and of equilibrium : A note on the `new' existence theorems," Journal of Mathematical Economics, Elsevier, vol. 3(3), pages 313-316, December.
    10. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
    11. Suzumura, Kataro, 1976. "Remarks on the Theory of Collective Choice," Economica, London School of Economics and Political Science, vol. 43(172), pages 381-390, November.
    12. Donald J. Brown, 1973. "Acyclic Choice," Cowles Foundation Discussion Papers 360, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Generalized Optimal-Choice Axiom; maximal elements; acyclicity; consistency; ≻-upper compactness;

    JEL classification:

    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11645. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.