IDEAS home Printed from https://ideas.repec.org/p/roc/rocher/563.html
   My bibliography  Save this paper

General Conditions for Existence of Maximal Elements via the Uncovered Set

Author

Listed:
  • John Duggan

    (W. Allen Wallis Institute of Political Economy, 107 Harkness Hall, University of Rochester, Rochester, NY 14627-0158)

Abstract

This paper disentangles the topological assumptions of classical results (e.g., Walker (1977)) on existence of maximal elements from rationality conditions. It is known from the social choice literature that under the standard topological conditions-with no other restrictions on preferences-there is an element such that the upper section of strict preference at that element is minimal in terms of set inclusion, i.e., the uncovered set is non-empty. Adding a condition that weakens known acyclicity and convexity assumptions, each such uncovered alternative is indeed maximal. A corollary is a result that weakens the semi-convexity condition of Yannelis and Prabhakar (1983).

Suggested Citation

  • John Duggan, 2011. "General Conditions for Existence of Maximal Elements via the Uncovered Set," RCER Working Papers 563, University of Rochester - Center for Economic Research (RCER).
  • Handle: RePEc:roc:rocher:563
    as

    Download full text from publisher

    File URL: http://rcer.econ.rochester.edu/RCERPAPERS/rcer_563.pdf
    File Function: full text
    Download Restriction: None
    ---><---

    References listed on IDEAS

    as
    1. Alcantud, Jose C.R., 2006. "Maximality with or without binariness: Transfer-type characterizations," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 182-191, March.
    2. Banks, Jeffrey S. & Duggan, John & Le Breton, Michel, 2002. "Bounds for Mixed Strategy Equilibria and the Spatial Model of Elections," Journal of Economic Theory, Elsevier, vol. 103(1), pages 88-105, March.
    3. Nehring, Klaus, 1996. "Maximal elements of non-binary choice functions on compact sets," Economics Letters, Elsevier, vol. 50(3), pages 337-340, March.
    4. J.C. R. Alcantud, 2002. "Characterization of the existence of maximal elements of acyclic relations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(2), pages 407-416.
    5. Donald J. Brown, 1973. "Acyclic Choice," Cowles Foundation Discussion Papers 360, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barelli, Paulo & Duggan, John, 2015. "Extremal choice equilibrium with applications to large games, stochastic games, & endogenous institutions," Journal of Economic Theory, Elsevier, vol. 155(C), pages 95-130.
    2. Quartieri, Federico, 2021. "Existence of maximals via right traces," MPRA Paper 107189, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    2. Alcantud, J.C.R., 2008. "Mixed choice structures, with applications to binary and non-binary optimization," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 242-250, February.
    3. Alcantud, Jose C.R., 2006. "Maximality with or without binariness: Transfer-type characterizations," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 182-191, March.
    4. Andrikopoulos, Athanasios & Zacharias, Eleftherios, 2008. "General solutions for choice sets: The Generalized Optimal-Choice Axiom set," MPRA Paper 11645, University Library of Munich, Germany.
    5. Kukushkin, Nikolai S., 2008. "Maximizing an interval order on compact subsets of its domain," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 195-206, September.
    6. Gerald H. Kramer, 1975. "A Dynamical Model of Political Equilibrium," Cowles Foundation Discussion Papers 396, Cowles Foundation for Research in Economics, Yale University.
    7. Xefteris, Dimitrios, 2017. "Multidimensional electoral competition between differentiated candidates," Games and Economic Behavior, Elsevier, vol. 105(C), pages 112-121.
    8. Jean-François Laslier, 2005. "Party Objectives in the “Divide a Dollar” Electoral Competition," Studies in Choice and Welfare, in: David Austen-Smith & John Duggan (ed.), Social Choice and Strategic Decisions, pages 113-130, Springer.
    9. Llinares, Juan-Vicente & Sanchez, M. Carmen, 1999. "Non-binary choice functions on non-compact sets," Economics Letters, Elsevier, vol. 63(1), pages 29-32, April.
    10. Cho, Seok-ju & Duggan, John, 2009. "Bargaining foundations of the median voter theorem," Journal of Economic Theory, Elsevier, vol. 144(2), pages 851-868, March.
    11. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    12. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    13. Tovey, Craig A., 2010. "The almost surely shrinking yolk," Mathematical Social Sciences, Elsevier, vol. 59(1), pages 74-87, January.
    14. De Donder, Philippe & Gallego, Maria, 2017. "Electoral Competition and Party Positioning," TSE Working Papers 17-760, Toulouse School of Economics (TSE).
    15. Alcantud, José Carlos R. & Bosi, Gianni & Zuanon, Magalì, 2009. "A selection of maximal elements under non-transitive indifferences," MPRA Paper 16601, University Library of Munich, Germany.
    16. Gerald H. Kramer, 1980. "Extension of a Dynamical Model of Political Equilibrium," Cowles Foundation Discussion Papers 556, Cowles Foundation for Research in Economics, Yale University.
    17. Quartieri, Federico, 2021. "Existence of maximals via right traces," MPRA Paper 107189, University Library of Munich, Germany.
    18. Begoña Subiza Martínez & Carmen Herrero Blanco, 1991. "A characterization of acyclic preferences on countable sets," Working Papers. Serie AD 1991-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    19. Alcantud, J. C. R., 2002. "Non-binary choice in a non-deterministic model," Economics Letters, Elsevier, vol. 77(1), pages 117-123, September.
    20. McKelvey, Richard D. & Patty, John W., 2006. "A theory of voting in large elections," Games and Economic Behavior, Elsevier, vol. 57(1), pages 155-180, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:roc:rocher:563. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard DiSalvo (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.