IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On the choice of most-preferred alternatives

  • Kukushkin, Nikolai S.

Maximal elements of a binary relation on compact subsets of a metric space define a choice function. Necessary and sufficient conditions are found for: (1) the choice function to have nonempty values and be path independent; (2) the choice function to have nonempty values provided the underlying relation is an interval order. For interval orders and semiorders, the same properties are characterized in terms of representations in a chain.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/803/1/MPRA_paper_803.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 803.

as
in new window

Length:
Date of creation: 09 Nov 2006
Date of revision:
Handle: RePEc:pra:mprapa:803
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mukherji, Anjan, 1977. "The Existence of Choice Functions," Econometrica, Econometric Society, vol. 45(4), pages 889-94, May.
  2. Campbell, Donald E. & Walker, Mark, 1990. "Maximal elements of weakly continuous relations," Journal of Economic Theory, Elsevier, vol. 50(2), pages 459-464, April.
  3. Walker, Mark, 1977. "On the existence of maximal elements," Journal of Economic Theory, Elsevier, vol. 16(2), pages 470-474, December.
  4. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:803. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.