IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/803.html
   My bibliography  Save this paper

On the choice of most-preferred alternatives

Author

Listed:
  • Kukushkin, Nikolai S.

Abstract

Maximal elements of a binary relation on compact subsets of a metric space define a choice function. Necessary and sufficient conditions are found for: (1) the choice function to have nonempty values and be path independent; (2) the choice function to have nonempty values provided the underlying relation is an interval order. For interval orders and semiorders, the same properties are characterized in terms of representations in a chain.

Suggested Citation

  • Kukushkin, Nikolai S., 2006. "On the choice of most-preferred alternatives," MPRA Paper 803, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:803
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/803/1/MPRA_paper_803.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Mukherji, Anjan, 1977. "The Existence of Choice Functions," Econometrica, Econometric Society, vol. 45(4), pages 889-894, May.
    2. Campbell, Donald E. & Walker, Mark, 1990. "Maximal elements of weakly continuous relations," Journal of Economic Theory, Elsevier, vol. 50(2), pages 459-464, April.
    3. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
    4. Walker, Mark, 1977. "On the existence of maximal elements," Journal of Economic Theory, Elsevier, vol. 16(2), pages 470-474, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kukushkin, Nikolai S., 2008. "Maximizing an interval order on compact subsets of its domain," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 195-206, September.

    More about this item

    Keywords

    Maximal element; Path independence; Interval order; Semiorder;

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:803. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.