IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v109y2021ics0264837721004270.html
   My bibliography  Save this article

Understanding stakeholder preferences for future biogas development in Germany

Author

Listed:
  • Venus, Terese E.
  • Strauss, Felix
  • Venus, Thomas J.
  • Sauer, Johannes

Abstract

As the German Renewable Energy Act (REA) strongly contributed to biogas expansion, the phase out of feed-in-tariffs poses serious challenges to the biogas sector and has implications for agricultural land use at the soil (e.g., digestate), field (e.g., crop variety) and sector level (e.g., land rental prices). Using the Q-methodology, we investigated stakeholder preferences for biogas development in Germany and identified four perspectives: (i) economic security and support, (ii) sustainability, (iii) opportunities for other farmers and (iv) alternative scale-dependent support. Although stakeholders recognized the importance of biogas for flexibility, there were diverging views on whether biogas should continue to receive economic support in the long-run and how effects on the agricultural market should be handled. If support compensates for specific aspects such as flexibility, special feedstock or heating, policy changes will likely reduce tension between biogas and non-biogas farmers. Farmer collaboration and community cooperation for heating were also investigated. Several farmers noted difficulties due to high transportation costs, limited storage and dependence on other farmers. Further research should investigate collaborative models, private incentives for cooperation and the additional services that biogas plants provide to the community (e.g. heating, drying of wood, reduction of greenhouse gas emissions).

Suggested Citation

  • Venus, Terese E. & Strauss, Felix & Venus, Thomas J. & Sauer, Johannes, 2021. "Understanding stakeholder preferences for future biogas development in Germany," Land Use Policy, Elsevier, vol. 109(C).
  • Handle: RePEc:eee:lauspo:v:109:y:2021:i:c:s0264837721004270
    DOI: 10.1016/j.landusepol.2021.105704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837721004270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2021.105704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Lauer & Daniela Thrän, 2018. "Flexible Biogas in Future Energy Systems—Sleeping Beauty for a Cheaper Power Generation," Energies, MDPI, vol. 11(4), pages 1-24, March.
    2. Solveigh Hennig & Uwe Latacz-Lohmann, 2017. "The incidence of biogas feed-in tariffs on farmland rental rates – evidence from northern Germany," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(2), pages 231-254.
    3. Britz, Wolfgang & Delzeit, Ruth, 2013. "The impact of German biogas production on European and global agricultural markets, land use and the environment," Energy Policy, Elsevier, vol. 62(C), pages 1268-1275.
    4. Cuppen, Eefje & Breukers, Sylvia & Hisschemöller, Matthijs & Bergsma, Emmy, 2010. "Q methodology to select participants for a stakeholder dialogue on energy options from biomass in the Netherlands," Ecological Economics, Elsevier, vol. 69(3), pages 579-591, January.
    5. Appel, Franziska & Ostermeyer-Wiethaup, Arlette & Balmann, Alfons, 2016. "Effects of the German Renewable Energy Act on structural change in agriculture – The case of biogas," Utilities Policy, Elsevier, vol. 41(C), pages 172-182.
    6. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    7. Sorda, G. & Sunak, Y. & Madlener, R., 2013. "An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in Germany," Ecological Economics, Elsevier, vol. 89(C), pages 43-60.
    8. Till Kuhn, 2017. "The revision of the German Fertiliser Ordinance in 2017," Discussion Papers 262054, University of Bonn, Institute for Food and Resource Economics.
    9. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    10. Delzeit, Ruth & Britz, Wolfgang & Kreins, Peter, 2012. "An economic assessment of biogas production and land use under the German renewable energy source act," Kiel Working Papers 1767 [rev.], Kiel Institute for the World Economy (IfW Kiel).
    11. Habermann, Hendrik & Breustedt, Gunnar, 2011. "Einfluss der Biogaserzeugung auf landwirtschaftliche Pachtpreise in Deutschland," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 60(02), pages 1-16, May.
    12. Ostermeyer, Arlette & Schonau, Franziska, 2012. "Effects of biogas production on inter- and in-farm competition," 131st Seminar, September 18-19, 2012, Prague, Czech Republic 135772, European Association of Agricultural Economists.
    13. Pablo-Romero, María del P. & Sánchez-Braza, Antonio & Salvador-Ponce, Jesús & Sánchez-Labrador, Natalia, 2017. "An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1366-1379.
    14. Dobers, Geesche M., 2019. "Acceptance of biogas plants taking into account space and place," Energy Policy, Elsevier, vol. 135(C).
    15. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    16. Emmann, Carsten H. & Guenther-Lübbers, Welf & Theuvsen, Ludwig, 2013. "Impacts of Biogas Production on the Production Factors Land and Labour – Current Effects, Possible Consequences and Further Research Needs," 2013 International European Forum, February 18-22, 2013, Innsbruck-Igls, Austria 164768, International European Forum on System Dynamics and Innovation in Food Networks.
    17. Raven, R.P.J.M. & Gregersen, K.H., 2007. "Biogas plants in Denmark: successes and setbacks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(1), pages 116-132, January.
    18. Emmann, Carsten H. & Guenther-Lübbers, Welf & Theuvsen, Ludwig, 2013. "Impacts of Biogas Production on the Production Factors Land and Labour – Current Effects, Possible Consequences and Further Research Needs," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 4(1), pages 1-13, July.
    19. Herbes, Carsten & Ramme, Iris, 2014. "Online marketing of green electricity in Germany—A content analysis of providers’ websites," Energy Policy, Elsevier, vol. 66(C), pages 257-266.
    20. Habermann, Hendrik & Breustedt, Gunnar, 2011. "Einfluss der Biogaserzeugung auf landwirtschaftliche Pachtpreise in Deutschland," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 60(2).
    21. Thiele, Holger & Brodersen, Claus M, 1999. "Differences in Farm Efficiency in Market and Transition Economies: Empirical Evidence from West to East Germany," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 26(3), pages 331-347, August.
    22. Qiao, Wei & Yan, Xiuyi & Ye, Junhui & Sun, Yifei & Wang, Wei & Zhang, Zhongzhi, 2011. "Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment," Renewable Energy, Elsevier, vol. 36(12), pages 3313-3318.
    23. Balussou, D. & McKenna, R. & Möst, D. & Fichtner, W., 2018. "A model-based analysis of the future capacity expansion for German biogas plants under different legal frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 119-131.
    24. Venus, Terese E. & Hinzmann, Mandy & Bakken, Tor Haakon & Gerdes, Holger & Godinho, Francisco Nunes & Hansen, Bendik & Pinheiro, António & Sauer, Johannes, 2020. "The public's perception of run-of-the-river hydropower across Europe," Energy Policy, Elsevier, vol. 140(C).
    25. Gömann, H. & Kreins, P. & Münch, J. & Delzeit, R., 2011. "Auswirkungen der Novellierung des erneuerbaren Energien-Gesetzes auf die Landwirtschaft in Deutschland," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46, March.
    26. Wassermann, Sandra & Reeg, Matthias & Nienhaus, Kristina, 2015. "Current challenges of Germany’s energy transition project and competing strategies of challengers and incumbents: The case of direct marketing of electricity from renewable energy sources," Energy Policy, Elsevier, vol. 76(C), pages 66-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Canessa, Carolin & Venus, Terese E. & Wiesmeier, Miriam & Mennig, Philipp & Sauer, Johannes, 2023. "Incentives, Rewards or Both in Payments for Ecosystem Services: Drawing a Link Between Farmers' Preferences and Biodiversity Levels," Ecological Economics, Elsevier, vol. 213(C).
    2. Canessa, Carolin & Venus, Terese & Wiesmeier, Miriam & Mennig, Philipp & Sauer, Johannes, 2023. "Farmers’ preferences over alternative AECS designs. Do the ecological conditions influence the willingness to accept result-based contracts?," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334508, Agricultural Economics Society - AES.
    3. Josef Navrátil & Stanislav Martinát & Tomáš Krejčí & Petr Klusáček & Richard J. Hewitt, 2021. "Conversion of Post-Socialist Agricultural Premises as a Chance for Renewable Energy Production. Photovoltaics or Biogas Plants?," Energies, MDPI, vol. 14(21), pages 1-21, November.
    4. Zhao Xin-gang & Wang Wei & Hu Shuran & Lu Wenjie, 2023. "How to Promote the Application of Biogas Power Technology: A Perspective of Incentive Policy," Energies, MDPI, vol. 16(4), pages 1-11, February.
    5. Yanbo Wang & Boyao Zhi & Shumin Xiang & Guangxin Ren & Yongzhong Feng & Gaihe Yang & Xiaojiao Wang, 2023. "China’s Biogas Industry’s Sustainable Transition to a Low-Carbon Plan—A Socio-Technical Perspective," Sustainability, MDPI, vol. 15(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueqing Yang & Yang Liu & Mei Wang & Alberto Bezama & Daniela Thrän, 2021. "Identifying the Necessities of Regional-Based Analysis to Study Germany’s Biogas Production Development under Energy Transition," Land, MDPI, vol. 10(2), pages 1-20, February.
    2. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    3. Olena Myrna & Martin Odening & Matthias Ritter, 2019. "The Influence of Wind Energy and Biogas on Farmland Prices," Land, MDPI, vol. 8(1), pages 1-14, January.
    4. Eugenio Demartini & Anna Gaviglio & Marco Gelati & Daniele Cavicchioli, 2016. "The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy," Energies, MDPI, vol. 9(11), pages 1-23, November.
    5. Guenther-Lübbers, W. & Theuvsen, L., 2015. "Regionalökonomische Effekte der niedersächsischen Biogasproduktion," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 50, March.
    6. Guenther-Lubbers, Welf & Theuvsen, Ludwig, 2014. "Regionalökonomische Effekte Der Niedersächsischen Biogasproduktion," 54th Annual Conference, Goettingen, Germany, September 17-19, 2014 187426, German Association of Agricultural Economists (GEWISOLA).
    7. Stelios Rozakis & Andrea Bartoli & Jacek Dach & Anna Jędrejek & Alina Kowalczyk-Juśko & Łukasz Mamica & Patrycja Pochwatka & Rafał Pudelko & Kesheng Shu, 2021. "Policy Impact on Regional Biogas Using a Modular Modeling Tool," Energies, MDPI, vol. 14(13), pages 1-21, June.
    8. Heinrich, F. & Appel, F., 2018. "Do investors ruin Germany s peasant agriculture?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277171, International Association of Agricultural Economists.
    9. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    10. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    11. O'Connor, S. & Ehimen, E. & Pillai, S.C. & Black, A. & Tormey, D. & Bartlett, J., 2021. "Biogas production from small-scale anaerobic digestion plants on European farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Henning Schaak & Oliver Musshoff, 2022. "The distribution of the rent–price relationship of agricultural land in Germany [An analysis of growth of U.S. farmland prices, 1963–82]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(3), pages 696-718.
    13. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    14. Herbes, Carsten & Rilling, Benedikt & Ringel, Marc, 2021. "Policy frameworks and voluntary markets for biomethane – How do different policies influence providers’ product strategies?," Energy Policy, Elsevier, vol. 153(C).
    15. Hennig Solveigh & Breustedt Gunnar, 2018. "The Incidence of Agricultural Subsidies on Rental Rates for Grassland," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 238(2), pages 125-156, April.
    16. Oniszk-Popławska, Anna & Matyka, Mariusz & Ryńska, Elżbieta Dagny, 2014. "Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 329-349.
    17. Cord-Friedrich von Hobe & Marius Michels & Oliver Musshoff, 2021. "German Farmers’ Perspectives on Price Drivers in Agricultural Land Rental Markets—A Combination of a Systematic Literature Review and Survey Results," Land, MDPI, vol. 10(2), pages 1-22, February.
    18. Zuzana LAJDOVA & Jan LAJDA & Peter BIELIK, 2016. "The impact of the biogas industry on agricultural sector in Germany," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(1), pages 1-8.
    19. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    20. Schaak, Henning & Mußhoff, Oliver, 2020. "A geoadditive distributional regression analysis of the local relationship of land prices and land rents in Germany," FORLand Working Papers 20 (2020), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:109:y:2021:i:c:s0264837721004270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.