IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v52y2018icp103-111.html
   My bibliography  Save this article

Economies of scale and density in the Italian water industry: A stochastic frontier approach

Author

Listed:
  • Guerrini, Andrea
  • Romano, Giulia
  • Leardini, Chiara

Abstract

The spending review carried out by many governments of the member countries of the European Union, which did away with a large part of public subsidies, recognizes that exercising control over operating and capital expenditure is one of the most important means to secure financial resources for public services. This study measures the inefficiency of 43 Italian water utilities, the main aim being to identify specific performance drivers among scale of operations, customer density, quality of water mains and wastewater treatment plants, and ownership structure. The novelty of this research lies in the procedures adopted for efficiency measurement. Besides a traditional approach to stochastic frontier analysis, the study applies true fixed effects in which time-invariant heterogeneity is introduced and kept separate from the inefficiency term. Further, we use the pairwise difference estimator for heteroskedastic normal–exponential specifications, wherein inefficiency follows a first-order autoregressive process, and we model inefficiency variance as a function of exogenous covariates. The results show that economies of scale do affect the Italian water sector, first benefiting utilities serving less than 50,000 customers, followed by those serving 50,000 to 150,000 customers. Similarly, population density improves efficiency, and firms operating in densely populated areas such as cities achieve the lowest cost of delivery per cubic meter of water. This evidence not only supports the choice of the national water regulatory authority to promote aggregations of firms using the tariff method, but also suggests the importance of considering density as a relevant variable to adjust the efficiency measures.

Suggested Citation

  • Guerrini, Andrea & Romano, Giulia & Leardini, Chiara, 2018. "Economies of scale and density in the Italian water industry: A stochastic frontier approach," Utilities Policy, Elsevier, vol. 52(C), pages 103-111.
  • Handle: RePEc:eee:juipol:v:52:y:2018:i:c:p:103-111
    DOI: 10.1016/j.jup.2018.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178717302680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2018.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Estache & MartÌn A. Rossi, 2002. "How Different Is the Efficiency of Public and Private Water Companies in Asia?," The World Bank Economic Review, World Bank, vol. 16(1), pages 139-148, June.
    2. Céline Nauges & Caroline Berg, 2008. "Economies of density, scale and scope in the water supply and sewerage sector: a study of four developing and transition economies," Journal of Regulatory Economics, Springer, vol. 34(2), pages 144-163, October.
    3. Johannes Sauer & Klaus Frohberg, 2007. "Allocative efficiency of rural water supply – a globally flexible SGM cost frontier," Journal of Productivity Analysis, Springer, vol. 27(1), pages 31-40, February.
    4. Fumitoshi Mizutani & Takuya Urakami, 2001. "articles: Identifying network density and scale economies for Japanese water supply organizations," Papers in Regional Science, Springer;Regional Science Association International, vol. 80(2), pages 211-230.
    5. Saal David S. & Arocena Pablo & Maziotis Alexandros & Triebs Thomas, 2013. "Scale and Scope Economies and the Efficient Vertical and Horizontal Configuration of the Water Industry: A Survey of the Literature," Review of Network Economics, De Gruyter, vol. 12(1), pages 93-129, March.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Youn Kim, H. & Clark, Robert M., 1988. "Economies of scale and scope in water supply," Regional Science and Urban Economics, Elsevier, vol. 18(4), pages 479-502, November.
    8. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    9. Bottasso, Anna & Conti, Maurizio, 2003. "Cost Inefficiency in the English and Welsh Water Industry: An Heteroskedastic Stochastic Cost Frontier Approach," Economics Discussion Papers 8872, University of Essex, Department of Economics.
    10. Massimo Filippini & Nevenka Hrovatin & Jelena Zorić, 2008. "Cost efficiency of Slovenian water distribution utilities: an application of stochastic frontier methods," Journal of Productivity Analysis, Springer, vol. 29(2), pages 169-182, April.
    11. Caves, Douglas W & Christensen, Laurits R & Swanson, Joseph A, 1981. "Productivity Growth, Scale Economies, and Capacity Utilization in U.S. Railroads, 1955-74," American Economic Review, American Economic Association, vol. 71(5), pages 994-1002, December.
    12. Colin Kirkpatrick & David Parker & Yin-Fang Zhang, 2006. "An Empirical Analysis of State and Private-Sector Provision of Water Services in Africa," The World Bank Economic Review, World Bank, vol. 20(1), pages 143-163.
    13. Giulia Romano & Andrea Guerrini & Silvia Vernizzi, 2013. "Ownership, Investment Policies and Funding Choices of Italian Water Utilities: An Empirical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3409-3419, July.
    14. Marques, Rui Cunha & De Witte, Kristof, 2011. "Is big better? On scale and scope economies in the Portuguese water sector," Economic Modelling, Elsevier, vol. 28(3), pages 1009-1016, May.
    15. van den Berg, Caroline, 2014. "The drivers of non-revenue water : how effective are non-revenue water reduction programs ?," Policy Research Working Paper Series 6997, The World Bank.
    16. Lin, Chen, 2005. "Service quality and prospects for benchmarking: Evidence from the Peru water sector," Utilities Policy, Elsevier, vol. 13(3), pages 230-239, September.
    17. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    18. Romano, Giulia & Guerrini, Andrea, 2011. "Measuring and comparing the efficiency of water utility companies: A data envelopment analysis approach," Utilities Policy, Elsevier, vol. 19(3), pages 202-209.
    19. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    20. Antonioli, B. & Filippini, M., 2001. "The use of a variable cost function in the regulation of the Italian water industry," Utilities Policy, Elsevier, vol. 10(3-4), pages 181-187.
    21. Rita Martins & Adelino Fortunato & Fernando Coelho, 2006. "Cost Structure of the Portuguese Water Industry: a Cubic Cost Function Application," GEMF Working Papers 2006-09, GEMF, Faculty of Economics, University of Coimbra.
    22. David Saal & David Parker & Tom Weyman-Jones, 2007. "Determining the contribution of technical change, efficiency change and scale change to productivity growth in the privatized English and Welsh water and sewerage industry: 1985–2000," Journal of Productivity Analysis, Springer, vol. 28(1), pages 127-139, October.
    23. Cécile Aubert & Arnaud Reynaud, 2005. "The Impact of Regulation on Cost Efficiency: An Empirical Analysis of Wisconsin Water Utilities," Journal of Productivity Analysis, Springer, vol. 23(3), pages 383-409, July.
    24. Carvalho, Pedro & Marques, Rui Cunha, 2014. "Computing economies of vertical integration, economies of scope and economies of scale using partial frontier nonparametric methods," European Journal of Operational Research, Elsevier, vol. 234(1), pages 292-307.
    25. Serge Garcia & Alban Thomas, 2001. "The Structure of Municipal Water Supply Costs: Application to a Panel of French Local Communities," Journal of Productivity Analysis, Springer, vol. 16(1), pages 5-29, July.
    26. Bhattacharyya, Arunava & Harris, Thomas R. & Narayanan, Rangesan & Raffiee, Kambiz, 1995. "Specification and estimation of the effect of ownership on the economic efficiency of the water utilities," Regional Science and Urban Economics, Elsevier, vol. 25(6), pages 759-784, December.
    27. Giovanni Fraquelli & Massimiliano Piacenza & Davide Vannoni, 2004. "Scope and scale economies in multi-utilities: evidence from gas, water and electricity combinations," Applied Economics, Taylor & Francis Journals, vol. 36(18), pages 2045-2057.
    28. Romano, Giulia & Molinos-Senante, María & Guerrini, Andrea, 2017. "Water utility efficiency assessment in Italy by accounting for service quality: An empirical investigation," Utilities Policy, Elsevier, vol. 45(C), pages 97-108.
    29. Tupper, Henrique Cesar & Resende, Marcelo, 2004. "Efficiency and regulatory issues in the Brazilian water and sewage sector: an empirical study," Utilities Policy, Elsevier, vol. 12(1), pages 29-40, March.
    30. Ford, J L & Warford, J J, 1969. "Cost Functions for the Water Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 18(1), pages 53-63, November.
    31. Kristof Witte & Rui Marques, 2011. "Big and beautiful? On non-parametrically measuring scale economies in non-convex technologies," Journal of Productivity Analysis, Springer, vol. 35(3), pages 213-226, June.
    32. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    33. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    34. Euijune Kim & Hyun Lee, 1998. "Spatial Integration Of Urban Water Services And Economies Of Scale," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 10(1), pages 3-18, March.
    35. Torres, Marcelo & Morrison Paul, Catherine J., 2006. "Driving forces for consolidation or fragmentation of the US water utility industry: A cost function approach with endogenous output," Journal of Urban Economics, Elsevier, vol. 59(1), pages 104-120, January.
    36. Andrea Guerrini & Giulia Romano & Bettina Campedelli, 2013. "Economies of Scale, Scope, and Density in the Italian Water Sector: A Two-Stage Data Envelopment Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4559-4578, October.
    37. Massarutto, Antonio & Ermano, Paolo, 2013. "Drowned in an inch of water," Utilities Policy, Elsevier, vol. 24(C), pages 20-31.
    38. Sabbioni, Guillermo, 2008. "Efficiency in the Brazilian sanitation sector," Utilities Policy, Elsevier, vol. 16(1), pages 11-20, March.
    39. Aida, Kazuo & Cooper, William W. & Pastor, Jésus T. & Sueyoshi, Toshiyuki, 1998. "Evaluating Water Supply Services in Japan with RAM: a Range-adjusted Measure of Inefficiency," Omega, Elsevier, vol. 26(2), pages 207-232, April.
    40. Douglas W. Caves & Laurits R. Christensen & Michael W. Tretheway, 1984. "Economies of Density versus Economies of Scale: Why Trunk and Local Service Airline Costs Differ," RAND Journal of Economics, The RAND Corporation, vol. 15(4), pages 471-489, Winter.
    41. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    42. David S Saal & David Parker, 2000. "The impact of privatization and regulation on the water and sewerage industry in England and Wales: a translog cost function model," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 253-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molinos-Senante, María & Villegas, Andres & Maziotis, Alexandros, 2019. "Are water tariffs sufficient incentives to reduce water leakages? An empirical approach for Chile," Utilities Policy, Elsevier, vol. 61(C).
    2. Massarutto, Antonio & Grassetti, Luca & Lambardi di San Miniato, Michele & Moletta, Mattia, 2023. "Efficient firms are all alike, but every inefficient firm is such in its own way: Heterogeneity of costs determinants in the Italian water sector," Utilities Policy, Elsevier, vol. 84(C).
    3. Mocholi-Arce, Manuel & Sala-Garrido, Ramon & Molinos-Senante, Maria & Maziotis, Alexandros, 2023. "Profit productivity change in the English and Welsh water sector: Impact of the price reviews," Utilities Policy, Elsevier, vol. 82(C).
    4. Zhou, Sheng & Xu, Zhiwei, 2022. "Energy efficiency assessment of RCEP member states: A three-stage slack based measurement DEA with undesirable outputs," Energy, Elsevier, vol. 253(C).
    5. Laureti, Tiziana & Benedetti, Ilaria & Branca, Giacomo, 2021. "Water use efficiency and public goods conservation: A spatial stochastic frontier model applied to irrigation in Southern Italy," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    6. Ligorio, Lorenzo & Caputo, Fabio & Venturelli, Andrea, 2022. "Sustainability disclosure and reporting by municipally owned water utilities," Utilities Policy, Elsevier, vol. 77(C).
    7. Sala-Garrido, Ramon & Mocholi-Arce, Manuel & Maziotis, Alexandros & Molinos-Senante, María, 2023. "The carbon and production performance of water utilities: Evidence from the English and Welsh water industry," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 292-300.
    8. Maziotis, Alexandros & Villegas, Andrés & Molinos-Senante, María & Sala-Garrido, Ramon, 2020. "Impact of external costs of unplanned supply interruptions on water company efficiency: Evidence from Chile," Utilities Policy, Elsevier, vol. 66(C).
    9. Anna Bottasso & Maurizio Conti, 2021. "Economie di integrazione verticale ed economie di scopo nel settore idrico e fognario: alcune considerazioni alla luce dell?evidenza empirica internazionale," ECONOMIA PUBBLICA, FrancoAngeli Editore, vol. 2021(3), pages 89-128.
    10. D'Amore, Gabriella & Landriani, Loris & Lepore, Luigi, 2021. "Ownership and sustainability of Italian water utilities: The stakeholder role," Utilities Policy, Elsevier, vol. 71(C).
    11. Maria Molinos-Senante & Alexandros Maziotis, 2021. "Productivity growth, economies of scale and scope in the water and sewerage industry: The Chilean case," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    12. Sala-Garrido, Ramon & Mocholi-Arce, Manuel & Molinos-Senante, Maria & Maziotis, Alexandros, 2021. "Assessing the marginal cost of reducing greenhouse gas emissions in the English and Welsh water and sewerage industry: A parametric approach," Utilities Policy, Elsevier, vol. 70(C).
    13. Di Vaio, Assunta & Trujillo, Lourdes & D'Amore, Gabriella & Palladino, Rosa, 2021. "Water governance models for meeting sustainable development Goals:A structured literature review," Utilities Policy, Elsevier, vol. 72(C).
    14. Cullmann, Astrid & Stiel, Caroline, 2022. "Cost and productivity effects of demographic changes on local water service," Utilities Policy, Elsevier, vol. 79(C).
    15. Maria Molinos-Senante & Alexandros Maziotis, 2022. "Decomposition of Cost Efficiency Into Persistent and Transient Efficiency in the Provision of Water Services: Evidence from England and Wales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1849-1862, April.
    16. David Markantonis & G.-Fivos Sargentis & Panayiotis Dimitriadis & Theano Iliopoulou & Aimilia Siganou & Konstantina Moraiti & Maria Nikolinakou & Ilias Taygetos Meletopoulos & Nikos Mamassis & Demetri, 2023. "Stochastic Evaluation of the Investment Risk by the Scale of Water Infrastructures—Case Study: The Municipality of West Mani (Greece)," World, MDPI, vol. 4(1), pages 1-20, January.
    17. Ramon Sala-Garrido & Manuel Mocholí-Arce & María Molinos-Senante, 2021. "Assessing the Quality of Service of Water Companies: a ‘Benefit of the Doubt’ Composite Indicator," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(1), pages 371-387, May.
    18. Fanny Cabrera Barbecho & Juan Pablo Sarmiento, 2023. "Exploring Technical Efficiency in Water Supply Evidence from Ecuador: Do Region Location and Management Type Matter?," Sustainability, MDPI, vol. 15(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Guerrini & Giulia Romano & Bettina Campedelli, 2013. "Economies of Scale, Scope, and Density in the Italian Water Sector: A Two-Stage Data Envelopment Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4559-4578, October.
    2. Walter, Matthias & Cullmann, Astrid & von Hirschhausen, Christian & Wand, Robert & Zschille, Michael, 2009. "Quo vadis efficiency analysis of water distribution? A comparative literature review," Utilities Policy, Elsevier, vol. 17(3-4), pages 225-232, September.
    3. Saal David S. & Arocena Pablo & Maziotis Alexandros & Triebs Thomas, 2013. "Scale and Scope Economies and the Efficient Vertical and Horizontal Configuration of the Water Industry: A Survey of the Literature," Review of Network Economics, De Gruyter, vol. 12(1), pages 93-129, March.
    4. Abbott, Malcolm & Cohen, Bruce, 2009. "Productivity and efficiency in the water industry," Utilities Policy, Elsevier, vol. 17(3-4), pages 233-244, September.
    5. Carvalho, Pedro & Marques, Rui Cunha & Berg, Sanford, 2012. "A meta-regression analysis of benchmarking studies on water utilities market structure," Utilities Policy, Elsevier, vol. 21(C), pages 40-49.
    6. Alexandr Akimov & Paul Simshauser, 2018. "Performance measurement in Australian water utilities: Current state and future directions," Discussion Papers in Finance finance:201802, Griffith University, Department of Accounting, Finance and Economics.
    7. Michael Zschille, 2012. "Consolidating the Water Industry: An Analysis of the Potential Gains from Horizontal Integration in a Conditional Efficiency Framework," Discussion Papers of DIW Berlin 1187, DIW Berlin, German Institute for Economic Research.
    8. Danelon, André F. & Spolador, Humberto F.S. & Kumbhakar, Subal C., 2021. "Weather and population size effects on water and sewer treatment costs: Evidence from Brazil," Journal of Development Economics, Elsevier, vol. 153(C).
    9. Michael Zschille, 2015. "Consolidating the water industry: an analysis of the potential gains from horizontal integration in a conditional efficiency framework," Journal of Productivity Analysis, Springer, vol. 44(1), pages 97-114, August.
    10. Angel Prieto & José L. Zofio & Inmaculada Alvarez, 2009. "Economías de escala, densidad y alcance en la provisión pública de infraestructura básica municipal," Hacienda Pública Española / Review of Public Economics, IEF, vol. 190(3), pages 59-94, September.
    11. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    12. Michael Zschille & Matthias Walter, 2012. "The performance of German water utilities: a (semi)-parametric analysis," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3749-3764, October.
    13. Picazo-Tadeo, Andrés J. & Sáez-Fernández, Francisco J. & González-Gómez, Francisco, 2008. "Assesing Performance in the Management of the Urban Water Cycle," Efficiency Series Papers 2008/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    14. Picazo-Tadeo, Andres J. & Saez-Fernandez, Francisco J. & Gonzalez-Gomez, Francisco, 2008. "Does service quality matter in measuring the performance of water utilities," Utilities Policy, Elsevier, vol. 16(1), pages 30-38, March.
    15. Michael Zschille, 2014. "Nonparametric measures of returns to scale: an application to German water supply," Empirical Economics, Springer, vol. 47(3), pages 1029-1053, November.
    16. Zschille, Michael, 2012. "Consolidating the Water Industry: An Analysis of the Potential Gains from Horizontal Integration in a Conditional Efficiency Fr," CEPR Discussion Papers 8737, C.E.P.R. Discussion Papers.
    17. Graziano Abrate & Fabrizio Erbetta & Giovanni Fraquelli, 2011. "Public utility planning and cost efficiency in a decentralized regulation context: the case of the Italian integrated water service," Journal of Productivity Analysis, Springer, vol. 35(3), pages 227-242, June.
    18. Malcolm Abbott & Bruce Cohen, 2010. "Industry Structure Issues in the Water and Wastewater Sectors in Australia," Economic Papers, The Economic Society of Australia, vol. 29(1), pages 48-63, March.
    19. Augusto C. Mercadier & Walter A. Cont & Gustavo Ferro, 2016. "Economies of scale in Peru’s water and sanitation sector," Journal of Productivity Analysis, Springer, vol. 45(2), pages 215-228, April.
    20. Mellah, Thuraya & Ben Amor, Tawfik, 2016. "Performance of the Tunisian Water Utility: An input-distance function approach," Utilities Policy, Elsevier, vol. 38(C), pages 18-32.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:52:y:2018:i:c:p:103-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.