IDEAS home Printed from
   My bibliography  Save this article

A numerical study for a mining project using real options valuation under commodity price uncertainty


  • Haque, Md. Aminul
  • Topal, Erkan
  • Lilford, Eric


Commodity price is an important factor for mining companies, as price volatility is a key parameter for mining project evaluation and investment decision making. The conventional discounted cash flow (DCF) methods are broadly used for mining project valuations, however, based on commodity price uncertainty and operational flexibilities, it is difficult and often inappropriate to determine mining project values through traditional DCF methods alone. In order to more accurately evaluate the economic viability of a mining project, the commodity price and its inherent volatility should be modelled appropriately and incorporated into the evaluation process. As a consequence, researchers and practitioners continue to develop and introduce real options valuation (ROV) methods for mining project evaluations under commodity price uncertainty, incorporating continuous time stochastic models. Although the concept of ROV arose a few decades ago, most of the models that have been developed to-date are generally limited to theoretical research and academia and consequently, the application of ROV methods remains poorly understood and often not used in mining project valuations. Analytical and numerical solutions derived through the application of ROV methods are rarely found in practice due to the complexity associated with solving the partial differential equations (PDE), which are dependent on several conditions and parameters. As a consequence, it may not generally be applicable to evaluate mining projects under all project-specific circumstances. Therefore, the greatest challenge to ROV modelling is in finding numerically explicit project values. This paper contributes towards the further development of known theoretical work and enhances an approach to approximating explicit numerical project values. Based on this work, it is possible to formulate more complex PDEs under additional uncertainties attached to the project and to approximate its numerical value or value ranges. To ensure the project is profitable and to reduce commodity price uncertainty, delta hedging and futures contracts have been used as options for deriving the PDE. Moreover, a new parameter for taxes has been incorporated within the PDE. This new PDE has been utilised to approximate the numerical values of a mining project considering a hypothetical gold mine as a case study. The explicit finite difference method (FDM) and MatLab software have been used and implemented to solve this PDE and to determine the numerical project values considering the available options associated with a mining project. In addition, commodity price volatility has been determined from historical data, and has again revealed price volatility as having a significant impact on mining project values.

Suggested Citation

  • Haque, Md. Aminul & Topal, Erkan & Lilford, Eric, 2014. "A numerical study for a mining project using real options valuation under commodity price uncertainty," Resources Policy, Elsevier, vol. 39(C), pages 115-123.
  • Handle: RePEc:eee:jrpoli:v:39:y:2014:i:c:p:115-123
    DOI: 10.1016/j.resourpol.2013.12.004

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    2. Costa Lima, Gabriel A. & Suslick, Saul B., 2006. "Estimating the volatility of mining projects considering price and operating cost uncertainties," Resources Policy, Elsevier, vol. 31(2), pages 86-94, June.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Merton, Robert C, 1987. " A Simple Model of Capital Market Equilibrium with Incomplete Information," Journal of Finance, American Finance Association, vol. 42(3), pages 483-510, July.
    5. Cortazar, Gonzalo & Casassus, Jaime, 1998. "Optimal Timing of a Mine Expansion: Implementing a Real Options Model," The Quarterly Review of Economics and Finance, Elsevier, vol. 38(3, Part 2), pages 755-769.
    6. Lenos Trigeorgis, 1993. "Real Options and Interactions With Financial Flexibility," Financial Management, Financial Management Association, vol. 22(3), Fall.
    7. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    8. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:gam:jsusta:v:9:y:2017:i:10:p:1705-:d:112998 is not listed on IDEAS
    2. Savolainen, Jyrki, 2016. "Real options in metal mining project valuation: Review of literature," Resources Policy, Elsevier, vol. 50(C), pages 49-65.
    3. repec:eee:jrpoli:v:53:y:2017:i:c:p:369-377 is not listed on IDEAS
    4. Inthavongsa, Inthanongsone & Drebenstedt, Carsten & Bongaerts, Jan & Sontamino, Phongpat, 2016. "Real options decision framework: Strategic operating policies for open pit mine planning," Resources Policy, Elsevier, vol. 47(C), pages 142-153.
    5. repec:eee:jrpoli:v:52:y:2017:i:c:p:393-404 is not listed on IDEAS
    6. repec:eee:jrpoli:v:52:y:2017:i:c:p:296-307 is not listed on IDEAS

    More about this item


    Real options valuation; Historical volatility; Discounted cash flow; Stochastic differential equation; Partial differential equation; Finite difference method; G13; Q3;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:39:y:2014:i:c:p:115-123. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.