IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v38y2013i3p373-383.html
   My bibliography  Save this article

Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration

Author

Listed:
  • Fizaine, Florian

Abstract

Today, the fight against global warming and the coming hydrocarbon exhaustion involve a drastic increase of clean energies. These technologies resort to many minor metals which are byproduct of major metals. We will take the definition of Hagelüken and Mesker (2010, Complex Life Cycles of Precious and Special Metals. In: Edition Thomas E. Graedel, Ester van der Voet (Eds.), Strüngmann Forum Report, Linkages of Sustainability, MIT Press) to show precisely what minor metals are: “[they are] metals that have relatively low production or usage, which occur in low ore concentrations, are regarded as rare, or are not traded at major public exchanges”. We will analyze the byproduct status affecting almost each minor metal in order to determine if the link with the metal main product can involve a threat for clean technology development. This paper will also deal with the theory and implications of the relationship between the byproduct and the main-product and then check it with empirical data. Until now, byproduct metal production and its variations seem relatively independent from major metal production thanks to the non-saturation of potential supply. By 2050, photovoltaic solar development should not lead to the saturation of potential supply.

Suggested Citation

  • Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
  • Handle: RePEc:eee:jrpoli:v:38:y:2013:i:3:p:373-383
    DOI: 10.1016/j.resourpol.2013.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142071300038X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    2. Pindyck, Robert S., 1982. "Jointly produced exhaustible resources," Journal of Environmental Economics and Management, Elsevier, vol. 9(4), pages 291-303, December.
    3. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    4. Radetzki, Marian & Eggert, Roderick G. & Lagos, Gustavo & Lima, Marcos & Tilton, John E., 2008. "The boom in mineral markets: How long might it last?," Resources Policy, Elsevier, vol. 33(3), pages 125-128, September.
    5. Fthenakis, Vasilis, 2009. "Sustainability of photovoltaics: The case for thin-film solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2746-2750, December.
    6. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    7. Yaksic, Andrés & Tilton, John E., 2009. "Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium," Resources Policy, Elsevier, vol. 34(4), pages 185-194, December.
    8. Tilton, John E. & Lagos, Gustavo, 2007. "Assessing the long-run availability of copper," Resources Policy, Elsevier, vol. 32(1-2), pages 19-23.
    9. Campbell, Gary A., 1985. "The role of co-products in stabilizing the metal mining industry," Resources Policy, Elsevier, vol. 11(4), pages 267-274, December.
    10. Baumol, William J, 1977. "On the Proper Cost Tests for Natural Monopoly in a Multiproduct Industry," American Economic Review, American Economic Association, vol. 67(5), pages 809-822, December.
    11. Engle, Robert F. & Yoo, Byung Sam, 1987. "Forecasting and testing in co-integrated systems," Journal of Econometrics, Elsevier, vol. 35(1), pages 143-159, May.
    12. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    13. John C. Panzar & Robert D. Willig, 1977. "Economies of Scale in Multi-Output Production," The Quarterly Journal of Economics, Oxford University Press, vol. 91(3), pages 481-493.
    14. Panzar, John C & Willig, Robert D, 1981. "Economies of Scope," American Economic Review, American Economic Association, vol. 71(2), pages 268-272, May.
    15. Packey, Daniel J., 2012. "Multiproduct mine output and the case of mining waste utilization," Resources Policy, Elsevier, vol. 37(1), pages 104-108.
    16. Mudd, Gavin M., 2010. "The Environmental sustainability of mining in Australia: key mega-trends and looming constraints," Resources Policy, Elsevier, vol. 35(2), pages 98-115, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:minecn:v:30:y:2017:i:3:d:10.1007_s13563-017-0114-y is not listed on IDEAS
    2. Frenzel, Max & Ketris, Marina P. & Seifert, Thomas & Gutzmer, Jens, 2016. "On the current and future availability of gallium," Resources Policy, Elsevier, vol. 47(C), pages 38-50.
    3. repec:eee:jrpoli:v:52:y:2017:i:c:p:327-335 is not listed on IDEAS
    4. repec:eee:rensus:v:77:y:2017:i:c:p:899-915 is not listed on IDEAS
    5. Brett W. Jordan, 2016. "Behavior of multi-product mining firms," Working Papers 2016-08, Colorado School of Mines, Division of Economics and Business.
    6. Afflerbach, Patrick & Fridgen, Gilbert & Keller, Robert & Rathgeber, Andreas W. & Strobel, Florian, 2014. "The by-product effect on metal markets – New insights to the price behavior of minor metals," Resources Policy, Elsevier, vol. 42(C), pages 35-44.
    7. repec:eee:resene:v:49:y:2017:i:c:p:233-250 is not listed on IDEAS
    8. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    9. Fizaine, Florian, 2015. "Minor metals and organized markets: News highlights about the consequences of establishing a futures market in a thin market with a dual trading price system," Resources Policy, Elsevier, vol. 46(P2), pages 59-70.
    10. repec:eee:jrpoli:v:55:y:2018:i:c:p:20-28 is not listed on IDEAS
    11. Redlinger, Michael & Eggert, Roderick, 2016. "Volatility of by-product metal and mineral prices," Resources Policy, Elsevier, vol. 47(C), pages 69-77.
    12. Lapko, Yulia & Trucco, Paolo & Nuur, Cali, 2016. "The business perspective on materials criticality: Evidence from manufacturers," Resources Policy, Elsevier, vol. 50(C), pages 93-107.
    13. Frenzel, Max & Tolosana-Delgado, Raimon & Gutzmer, Jens, 2015. "Assessing the supply potential of high-tech metals – A general method," Resources Policy, Elsevier, vol. 46(P2), pages 45-58.

    More about this item

    Keywords

    Byproduct; Byproduct; Joint product; Minor metals; Clean technologies;

    JEL classification:

    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:38:y:2013:i:3:p:373-383. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.