IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v34y2006i6p533-537.html
   My bibliography  Save this article

Determining optimal disassembly and recovery strategies

Author

Listed:
  • Teunter, Ruud H.

Abstract

We present a stochastic dynamic programming algorithm for determining the optimal disassembly and recovery strategy, given the disassembly tree, the process-dependent quality distributions of assemblies, and the quality-dependent recovery options and associated profits for assemblies. This algorithm generalizes the one proposed by Krikke et al. (International Journal of Production Research 1998; 36(1):111-39) in two ways. First, there can be multiple disassembly processes. Second, partial disassembly is allowed. Both generalizations are important for practise.

Suggested Citation

  • Teunter, Ruud H., 2006. "Determining optimal disassembly and recovery strategies," Omega, Elsevier, vol. 34(6), pages 533-537, December.
  • Handle: RePEc:eee:jomega:v:34:y:2006:i:6:p:533-537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(05)00021-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spengler, Th. & Puchert, H. & Penkuhn, T. & Rentz, O., 1997. "Environmental integrated production and recycling management," European Journal of Operational Research, Elsevier, vol. 97(2), pages 308-326, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Huihui & Lei, Ming & Deng, Honghui & Keong Leong, G. & Huang, Tao, 2016. "A dual channel, quality-based price competition model for the WEEE recycling market with government subsidy," Omega, Elsevier, vol. 59(PB), pages 290-302.
    2. Pokharel, Shaligram & Mutha, Akshay, 2009. "Perspectives in reverse logistics: A review," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 175-182.
    3. Ömer Faruk Yılmaz & Büşra Yazıcı, 2022. "Tactical level strategies for multi-objective disassembly line balancing problem with multi-manned stations: an optimization model and solution approaches," Annals of Operations Research, Springer, vol. 319(2), pages 1793-1843, December.
    4. Chouinard, Marc & D'Amours, Sophie & Aït-Kadi, Daoud, 2008. "A stochastic programming approach for designing supply loops," International Journal of Production Economics, Elsevier, vol. 113(2), pages 657-677, June.
    5. Zhang, Yanzi & Berenguer, Gemma & Zhang, Zhi-Hai, 2024. "A subsidized reverse supply chain in the Chinese electronics industry," Omega, Elsevier, vol. 122(C).
    6. Kai Meng & Peihuang Lou & Xianghui Peng & Victor Prybutok, 2017. "Quality-driven recovery decisions for used components in reverse logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4712-4728, August.
    7. Wu, Cheng-Han, 2013. "OEM product design in a price competition with remanufactured product," Omega, Elsevier, vol. 41(2), pages 287-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Shams & Subramanian, Nachiappan, 2012. "Factors for implementing end-of-life computer recycling operations in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 140(1), pages 239-248.
    2. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    3. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    4. Letmathe, Peter & Wagner, Sandra, 2018. "“Messy” marginal costs: Internal pricing of environmental aspects on the firm level," International Journal of Production Economics, Elsevier, vol. 201(C), pages 41-52.
    5. Salema, Maria Isabel Gomes & Barbosa-Povoa, Ana Paula & Novais, Augusto Q., 2007. "An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1063-1077, June.
    6. Hamed Soleimani & Prem Chhetri & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-Hashem & Shahrooz Shahparvari, 2022. "Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics," Annals of Operations Research, Springer, vol. 318(1), pages 531-556, November.
    7. B. Muller, Daniel, 2006. "Stock dynamics for forecasting material flows--Case study for housing in The Netherlands," Ecological Economics, Elsevier, vol. 59(1), pages 142-156, August.
    8. Chouinard, Marc & D'Amours, Sophie & Aït-Kadi, Daoud, 2008. "A stochastic programming approach for designing supply loops," International Journal of Production Economics, Elsevier, vol. 113(2), pages 657-677, June.
    9. Choi, Dae-Won & Hwang, Hark & Koh, Shie-Gheun, 2007. "A generalized ordering and recovery policy for reusable items," European Journal of Operational Research, Elsevier, vol. 182(2), pages 764-774, October.
    10. Gamberini, Rita & Gebennini, Elisa & Manzini, Riccardo & Ziveri, Andrea, 2010. "On the integration of planning and environmental impact assessment for a WEEE transportation network—A case study," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 937-951.
    11. Fleischmann, Mortiz & Krikke, Hans Ronald & Dekker, Rommert & Flapper, Simme Douwe P., 2000. "A characterisation of logistics networks for product recovery," Omega, Elsevier, vol. 28(6), pages 653-666, December.
    12. V. Daniel R. Guide & Vaidyanathan Jayaraman & Rajesh Srivastava & W. C. Benton, 2000. "Supply-Chain Management for Recoverable Manufacturing Systems," Interfaces, INFORMS, vol. 30(3), pages 125-142, June.
    13. Lee, Der-Horng & Dong, Meng & Bian, Wen, 2010. "The design of sustainable logistics network under uncertainty," International Journal of Production Economics, Elsevier, vol. 128(1), pages 159-166, November.
    14. Sabharwal, Srishti & Garg, Suresh, 2013. "Determining cost effectiveness index of remanufacturing: A graph theoretic approach," International Journal of Production Economics, Elsevier, vol. 144(2), pages 521-532.
    15. Barker, Theresa J. & Zabinsky, Zelda B., 2011. "A multicriteria decision making model for reverse logistics using analytical hierarchy process," Omega, Elsevier, vol. 39(5), pages 558-573, October.
    16. Geldermann, Jutta & Treitz, Martin & Rentz, Otto, 2006. "Integrated technique assessment based on the pinch analysis approach for the design of production networks," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1020-1032, June.
    17. Chen, Xudong & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Kato, Hirokazu & Geng, Yong, 2014. "Determining optimal resource recycling boundary at regional level: A case study on Tokyo Metropolitan Area in Japan," European Journal of Operational Research, Elsevier, vol. 233(2), pages 337-348.
    18. Kilic, Huseyin Selcuk & Cebeci, Ufuk & Ayhan, Mustafa Batuhan, 2015. "Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 120-132.
    19. Fleischmann, M., 2001. "Reverse Logistics Network Structures and Design," ERIM Report Series Research in Management ERS-2001-52-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Wang, Ziping & Yao, Dong-Qing & Huang, Peiqing, 2007. "A new location-inventory policy with reverse logistics applied to B2C e-markets of China," International Journal of Production Economics, Elsevier, vol. 107(2), pages 350-363, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:34:y:2006:i:6:p:533-537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.