IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v59y2006i1p142-156.html
   My bibliography  Save this article

Stock dynamics for forecasting material flows--Case study for housing in The Netherlands

Author

Listed:
  • B. Muller, Daniel

Abstract

No abstract is available for this item.

Suggested Citation

  • B. Muller, Daniel, 2006. "Stock dynamics for forecasting material flows--Case study for housing in The Netherlands," Ecological Economics, Elsevier, vol. 59(1), pages 142-156, August.
  • Handle: RePEc:eee:ecolec:v:59:y:2006:i:1:p:142-156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(05)00460-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijn, Rene & Huele, Ruben & van der Voet, Ester, 2000. "Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden," Ecological Economics, Elsevier, vol. 32(2), pages 241-254, February.
    2. Raymond J. Kopp & V. Kerry Smith, 1980. "Measuring Factor Substitution with Neoclassical Models: An Experimental Evaluation," Bell Journal of Economics, The RAND Corporation, vol. 11(2), pages 631-655, Autumn.
    3. Daniel B. Müller & Hans‐Peter Bader & Peter Baccini, 2004. "Long‐term Coordination of Timber Production and Consumption Using a Dynamic Material and Energy Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 8(3), pages 65-88, July.
    4. van der Voet, Ester & Kleijn, Rene & Huele, Ruben & Ishikawa, Masanobu & Verkuijlen, Evert, 2002. "Predicting future emissions based on characteristics of stocks," Ecological Economics, Elsevier, vol. 41(2), pages 223-234, May.
    5. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    6. Franklin M. Fisher & Paul H. Cootner & Martin N. Baily, 1972. "An Econometric Model of the World Copper Industry," Bell Journal of Economics, The RAND Corporation, vol. 3(2), pages 568-609, Autumn.
    7. Binder, Claudia & Bader, Hans-Peter & Scheidegger, Ruth & Baccini, Peter, 2001. "Dynamic models for managing durables using a stratified approach: the case of Tunja, Colombia," Ecological Economics, Elsevier, vol. 38(2), pages 191-207, August.
    8. Moore, David J. & Tilton, John E. & Shields, Deborah J., 1996. "Economic growth and the demand for construction materials," Resources Policy, Elsevier, vol. 22(3), pages 197-205, September.
    9. Spengler, Th. & Puchert, H. & Penkuhn, T. & Rentz, O., 1997. "Environmental integrated production and recycling management," European Journal of Operational Research, Elsevier, vol. 97(2), pages 308-326, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Han & Xing Meng & Yanqi Zhang & Jiabin Liu, 2017. "The Impact of Infrastructure Stock Density on CO 2 Emissions: Evidence from China Provinces," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    2. Woodward, Rachel & Duffy, Noel, 2011. "Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 448-455.
    3. Knoeri, Christof & Binder, Claudia R. & Althaus, Hans-Joerg, 2011. "Decisions on recycling: Construction stakeholders’ decisions regarding recycled mineral construction materials," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1039-1050.
    4. McMillan, Colin A. & Moore, Michael R. & Keoleian, Gregory A. & Bulkley, Jonathan W., 2010. "Quantifying U.S. aluminum in-use stocks and their relationship with economic output," Ecological Economics, Elsevier, vol. 69(12), pages 2606-2613, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yucheng & Yang, Ning & Hu, Shanying, 2013. "Industrial metabolism of PVC in China: A dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 33-40.
    2. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    3. Binder, Claudia R. & Hofer, Christoph & Wiek, Arnim & Scholz, Roland W., 2004. "Transition towards improved regional wood flows by integrating material flux analysis and agent analysis: the case of Appenzell Ausserrhoden, Switzerland," Ecological Economics, Elsevier, vol. 49(1), pages 1-17, May.
    4. Binder, Claudia R. & Mosler, Hans-Joachim, 2007. "Waste-resource flows of short-lived goods in households of Santiago de Cuba," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 265-283.
    5. Ermelinda M. Harper, 2008. "A Product-Level Approach to Historical Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 768-784, October.
    6. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    7. Zhang, Ling & Yuan, Zengwei & Bi, Jun, 2011. "Predicting future quantities of obsolete household appliances in Nanjing by a stock-based model," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1087-1094.
    8. Matsuno, Yasunari & Hur, Tak & Fthenakis, Vasilis, 2012. "Dynamic modeling of cadmium substance flow with zinc and steel demand in Japan," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 83-90.
    9. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    10. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    11. Elshkaki, Ayman & van der Voet, Ester & Timmermans, Veerle & Van Holderbeke, Mirja, 2005. "Dynamic stock modelling: A method for the identification and estimation of future waste streams and emissions based on past production and product stock characteristics," Energy, Elsevier, vol. 30(8), pages 1353-1363.
    12. Gondia Sokhna Seck & Emmanuel Hache & Clement Bonnet & Marine Simoën & Samuel Carcanague, 2020. "Copper at the crossroads : Assessment of the interactions between low-carbon energy transition and supply limitations," Post-Print hal-03118509, HAL.
    13. Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2010. "Substance flow analysis of chromium and nickel in the material flow of stainless steel in Japan," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 851-863.
    14. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    15. Oguchi, Masahiro & Kameya, Takashi & Yagi, Suguru & Urano, Kohei, 2008. "Product flow analysis of various consumer durables in Japan," Resources, Conservation & Recycling, Elsevier, vol. 52(3), pages 463-480.
    16. Daigo, Ichiro & Hashimoto, Susumu & Matsuno, Yasunari & Adachi, Yoshihiro, 2009. "Material stocks and flows accounting for copper and copper-based alloys in Japan," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 208-217.
    17. Thibault Fally & James Sayre, 2018. "Commodity Trade Matters," 2018 Meeting Papers 172, Society for Economic Dynamics.
    18. Binder, Claudia & Bader, Hans-Peter & Scheidegger, Ruth & Baccini, Peter, 2001. "Dynamic models for managing durables using a stratified approach: the case of Tunja, Colombia," Ecological Economics, Elsevier, vol. 38(2), pages 191-207, August.
    19. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    20. John T. Cuddington & Leila Dagher, 2015. "Estimating Short and Long-Run Demand Elasticities: A Primer with Energy-Sector Applications," The Energy Journal, , vol. 36(1), pages 185-210, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:59:y:2006:i:1:p:142-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.