IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v55y2011i11p1087-1094.html
   My bibliography  Save this article

Predicting future quantities of obsolete household appliances in Nanjing by a stock-based model

Author

Listed:
  • Zhang, Ling
  • Yuan, Zengwei
  • Bi, Jun

Abstract

China has become one of the largest producers of obsolete household appliances (HAs) in the world. However, information on discarded HAs in China is deficient owing to the unavailability of reliable data. The estimation of future obsolete streams is a crucial issue for the establishment of efficient waste collection and recycling systems. The present study describes a prediction model to forecast future obsolete HAs on the basis of information of in-use stocks of HAs in households. The model was applied to a forecasting analysis of quantities of obsolete HAs from 2009 to 2050 in Nanjing, China. The results show that a total of about 76 million units (2.8 million tonnes) of obsolete HAs will be generated in Nanjing over the next 40 years. Discarded air conditioners, color TV sets, and personal computers will be the major contributors. The total discarded amount of major kinds of HAs will increase from nearly 1.0 million units in 2009 to a maximum of 2.1 million units in 2040, and then decrease slightly to 2.0 million units in 2050. Urban households will generate significantly more obsolete HAs (about 56 million units) than rural households, due to the difference in their HA possession levels. The results of this study should help the Nanjing municipality to develop the collection and recycling systems and facilities needed for the obsolete HAs generated in the future. From a methodological perspective, the stock-based model provides a suitable tool to predict the generation of discarded HAs in the future.

Suggested Citation

  • Zhang, Ling & Yuan, Zengwei & Bi, Jun, 2011. "Predicting future quantities of obsolete household appliances in Nanjing by a stock-based model," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 1087-1094.
  • Handle: RePEc:eee:recore:v:55:y:2011:i:11:p:1087-1094
    DOI: 10.1016/j.resconrec.2011.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344911001297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2011.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijn, Rene & Huele, Ruben & van der Voet, Ester, 2000. "Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden," Ecological Economics, Elsevier, vol. 32(2), pages 241-254, February.
    2. Elshkaki, Ayman & van der Voet, Ester & Timmermans, Veerle & Van Holderbeke, Mirja, 2005. "Dynamic stock modelling: A method for the identification and estimation of future waste streams and emissions based on past production and product stock characteristics," Energy, Elsevier, vol. 30(8), pages 1353-1363.
    3. van der Voet, Ester & Kleijn, Rene & Huele, Ruben & Ishikawa, Masanobu & Verkuijlen, Evert, 2002. "Predicting future emissions based on characteristics of stocks," Ecological Economics, Elsevier, vol. 41(2), pages 223-234, May.
    4. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dou, Yijie & Sarkis, Joseph, 2013. "A multiple stakeholder perspective on barriers to implementing China RoHS regulations," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 92-104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yucheng & Yang, Ning & Hu, Shanying, 2013. "Industrial metabolism of PVC in China: A dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 33-40.
    2. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    3. B. Muller, Daniel, 2006. "Stock dynamics for forecasting material flows--Case study for housing in The Netherlands," Ecological Economics, Elsevier, vol. 59(1), pages 142-156, August.
    4. Matsuno, Yasunari & Hur, Tak & Fthenakis, Vasilis, 2012. "Dynamic modeling of cadmium substance flow with zinc and steel demand in Japan," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 83-90.
    5. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    6. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    7. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    8. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    9. Binder, Claudia R. & Hofer, Christoph & Wiek, Arnim & Scholz, Roland W., 2004. "Transition towards improved regional wood flows by integrating material flux analysis and agent analysis: the case of Appenzell Ausserrhoden, Switzerland," Ecological Economics, Elsevier, vol. 49(1), pages 1-17, May.
    10. Hoarau, Quentin & Lorang, Etienne, 2022. "An assessment of the European regulation on battery recycling for electric vehicles," Energy Policy, Elsevier, vol. 162(C).
    11. Taulo, J.L. & Sebitosi, A.B., 2016. "Material and energy flow analysis of the Malawian tea industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1337-1350.
    12. Binder, Claudia R. & Mosler, Hans-Joachim, 2007. "Waste-resource flows of short-lived goods in households of Santiago de Cuba," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 265-283.
    13. Ermelinda M. Harper, 2008. "A Product-Level Approach to Historical Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 768-784, October.
    14. Marwede, Max & Reller, Armin, 2012. "Future recycling flows of tellurium from cadmium telluride photovoltaic waste," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 35-49.
    15. Daigo, Ichiro & Matsuno, Yasunari & Adachi, Yoshihiro, 2010. "Substance flow analysis of chromium and nickel in the material flow of stainless steel in Japan," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 851-863.
    16. Elshkaki, Ayman & Reck, Barbara K. & Graedel, T.E., 2017. "Anthropogenic nickel supply, demand, and associated energy and water use," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 300-307.
    17. Tsiliyannis, Christos Aristeides, 2018. "Markov chain modeling and forecasting of product returns in remanufacturing based on stock mean-age," European Journal of Operational Research, Elsevier, vol. 271(2), pages 474-489.
    18. Wang, Minxi & Chen, Wu & Zhou, Yang & Li, Xin, 2017. "Assessment of potential copper scrap in China and policy recommendation," Resources Policy, Elsevier, vol. 52(C), pages 235-244.
    19. Oguchi, Masahiro & Kameya, Takashi & Yagi, Suguru & Urano, Kohei, 2008. "Product flow analysis of various consumer durables in Japan," Resources, Conservation & Recycling, Elsevier, vol. 52(3), pages 463-480.
    20. Daigo, Ichiro & Hashimoto, Susumu & Matsuno, Yasunari & Adachi, Yoshihiro, 2009. "Material stocks and flows accounting for copper and copper-based alloys in Japan," Resources, Conservation & Recycling, Elsevier, vol. 53(4), pages 208-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:55:y:2011:i:11:p:1087-1094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.