IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v319y2022i2d10.1007_s10479-020-03902-3.html
   My bibliography  Save this article

Tactical level strategies for multi-objective disassembly line balancing problem with multi-manned stations: an optimization model and solution approaches

Author

Listed:
  • Ömer Faruk Yılmaz

    (Karadeniz Technical University)

  • Büşra Yazıcı

    (Karadeniz Technical University)

Abstract

The disassembly line plays a vital role to recover the products for remanufacturing enterprises. For this reason, designing and balancing of the disassembly line are important to utilize the economic and tactical benefits. This study explores a multi-objective disassembly line balancing problem (MODLBP) from a different point of view by considering the workers’ heterogeneity and the multi-manned stations where the group-based worker assignment strategy is implemented. Although the MODLBP has been attracting attention in the last decade, to the best of our knowledge, this is the first study investigating the addressed problem in the current form. To further analyze the problem, first, it is described by focusing on the tactical level strategies and operational level scenarios. Subsequently, a novel multi-objective optimization model is formulated with three objectives, that of minimizing overall cost, cycle time, and workload imbalance. On one hand, the improved augmented ϵ-constrained (AUGMECON2) method is used to obtain the Pareto-optimal solutions for small-sized problems. On the other hand, a set of algorithms based on the non-dominated sorting genetic algorithm-II is implemented to gain managerial insights regarding the strategies and scenarios for large-sized problems. A computational study is conducted based on the generated problems to reveal the prominent differences between strategies in terms of performance metrics. According to the computational results, high-quality solutions are achieved when the group-based assignment strategy is realized. Besides, it is revealed from scenario analysis that the training of workers leads to considerable improvements in the system performance.

Suggested Citation

  • Ömer Faruk Yılmaz & Büşra Yazıcı, 2022. "Tactical level strategies for multi-objective disassembly line balancing problem with multi-manned stations: an optimization model and solution approaches," Annals of Operations Research, Springer, vol. 319(2), pages 1793-1843, December.
  • Handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-020-03902-3
    DOI: 10.1007/s10479-020-03902-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03902-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03902-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michels, Adalberto Sato & Lopes, Thiago Cantos & Sikora, Celso Gustavo Stall & Magatão, Leandro, 2019. "A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 278(3), pages 796-808.
    2. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).
    3. Talip Kellegöz & Bilal Toklu, 2015. "A priority rule-based constructive heuristic and an improvement method for balancing assembly lines with parallel multi-manned workstations," International Journal of Production Research, Taylor & Francis Journals, vol. 53(3), pages 736-756, February.
    4. Seda Hezer & Yakup Kara, 2015. "A network-based shortest route model for parallel disassembly line balancing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1849-1865, March.
    5. Liu, Huihui & Lei, Ming & Deng, Honghui & Keong Leong, G. & Huang, Tao, 2016. "A dual channel, quality-based price competition model for the WEEE recycling market with government subsidy," Omega, Elsevier, vol. 59(PB), pages 290-302.
    6. Mohand Lounes Bentaha & Olga Battaïa & Alexandre Dolgui, 2015. "An exact solution approach for disassembly line balancing problem under uncertainty of the task processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1807-1818, March.
    7. Mohand Lounes Bentaha & Alexandre Dolgui & Olga Battaïa & Robert J. Riggs & Jack Hu, 2018. "Profit-oriented partial disassembly line design: dealing with hazardous parts and task processing times uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 56(24), pages 7220-7242, December.
    8. Avci, Mualla Gonca & Selim, Hasan, 2018. "A multi-objective simulation-based optimization approach for inventory replenishment problem with premium freights in convergent supply chains," Omega, Elsevier, vol. 80(C), pages 153-165.
    9. Florios, Kostas & Mavrotas, George, 2014. "Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems," MPRA Paper 105074, University Library of Munich, Germany.
    10. Emre Cevikcan & Dicle Aslan & Fatma Betul Yeni, 2020. "Disassembly line design with multi-manned workstations: a novel heuristic optimisation approach," International Journal of Production Research, Taylor & Francis Journals, vol. 58(3), pages 649-670, February.
    11. Ali Koc & Ihsan Sabuncuoglu & Erdal Erel, 2009. "Two exact formulations for disassembly line balancing problems with task precedence diagram construction using an AND/OR graph," IISE Transactions, Taylor & Francis Journals, vol. 41(10), pages 866-881.
    12. Abdolreza Roshani & Davide Giglio, 2017. "Simulated annealing algorithms for the multi-manned assembly line balancing problem: minimising cycle time," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2731-2751, May.
    13. Can B. Kalayci & Olcay Polat & Surendra M. Gupta, 2016. "A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem," Annals of Operations Research, Springer, vol. 242(2), pages 321-354, July.
    14. Teunter, Ruud H., 2006. "Determining optimal disassembly and recovery strategies," Omega, Elsevier, vol. 34(6), pages 533-537, December.
    15. McGovern, Seamus M. & Gupta, Surendra M., 2007. "A balancing method and genetic algorithm for disassembly line balancing," European Journal of Operational Research, Elsevier, vol. 179(3), pages 692-708, June.
    16. Bukchin, Joseph & Masin, Michael, 2004. "Multi-objective design of team oriented assembly systems," European Journal of Operational Research, Elsevier, vol. 156(2), pages 326-352, July.
    17. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    18. Fang, Yilin & Liu, Quan & Li, Miqing & Laili, Yuanjun & Pham, Duc Truong, 2019. "Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations," European Journal of Operational Research, Elsevier, vol. 276(1), pages 160-174.
    19. Chica, Manuel & Bautista, Joaquín & Cordón, Óscar & Damas, Sergio, 2016. "A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand," Omega, Elsevier, vol. 58(C), pages 55-68.
    20. Lixia Zhu & Zeqiang Zhang & Yi Wang, 2018. "A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(24), pages 7354-7374, December.
    21. Feifeng Zheng & Junkai He & Feng Chu & Ming Liu, 2018. "A new distribution-free model for disassembly line balancing problem with stochastic task processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 56(24), pages 7341-7353, December.
    22. Eren Özceylan & Can B. Kalayci & Aşkıner Güngör & Surendra M. Gupta, 2019. "Disassembly line balancing problem: a review of the state of the art and future directions," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 4805-4827, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiping Ren & Rui Chen & Zhijun Lin, 2023. "A Study of Electronic Product Supply Chain Decisions Considering Quality Control and Cross-Channel Returns," Sustainability, MDPI, vol. 15(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    2. Fang, Yilin & Liu, Quan & Li, Miqing & Laili, Yuanjun & Pham, Duc Truong, 2019. "Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations," European Journal of Operational Research, Elsevier, vol. 276(1), pages 160-174.
    3. Lixia Zhu & Zeqiang Zhang & Yi Wang & Ning Cai, 2020. "On the end-of-life state oriented multi-objective disassembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1403-1428, August.
    4. Junkai He & Feng Chu & Feifeng Zheng & Ming Liu, 2021. "A green-oriented bi-objective disassembly line balancing problem with stochastic task processing times," Annals of Operations Research, Springer, vol. 296(1), pages 71-93, January.
    5. Yusha Zhou & Xiuping Guo & Dong Li, 2022. "A dynamic programming approach to a multi-objective disassembly line balancing problem," Annals of Operations Research, Springer, vol. 311(2), pages 921-944, April.
    6. Peng Hu & Feng Chu & Yunfei Fang & Peng Wu, 2022. "Novel distribution-free model and method for stochastic disassembly line balancing with limited distributional information," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1423-1446, July.
    7. Murat Şahin & Talip Kellegöz, 2023. "Benders’ decomposition based exact solution method for multi-manned assembly line balancing problem with walking workers," Annals of Operations Research, Springer, vol. 321(1), pages 507-540, February.
    8. Jianhua Cao & Xuhui Xia & Lei Wang & Zelin Zhang & Xiang Liu, 2019. "A Novel Multi-Efficiency Optimization Method for Disassembly Line Balancing Problem," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    9. Süleyman Mete & Faruk Serin & Zeynel Abidin Çil & Erkan Çelik & Eren Özceylan, 2023. "A comparative analysis of meta-heuristic methods on disassembly line balancing problem with stochastic time," Annals of Operations Research, Springer, vol. 321(1), pages 371-408, February.
    10. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    11. Andreu-Casas, Enric & García-Villoria, Alberto & Pastor, Rafael, 2022. "Multi-manned assembly line balancing problem with dependent task times: a heuristic based on solving a partition problem with constraints," European Journal of Operational Research, Elsevier, vol. 302(1), pages 96-116.
    12. Xuhui Xia & Wei Liu & Zelin Zhang & Lei Wang & Jianhua Cao & Xiang Liu, 2019. "A Balancing Method of Mixed-model Disassembly Line in Random Working Environment," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    13. Bentaha, Mohand-Lounes & Voisin, Alexandre & Marangé, Pascale, 2020. "A decision tool for disassembly process planning under end-of-life product quality," International Journal of Production Economics, Elsevier, vol. 219(C), pages 386-401.
    14. Liang, Wei & Zhang, Zeqiang & Yin, Tao & Zhang, Yu & Wu, Tengfei, 2023. "Modelling and optimisation of energy consumption and profit-oriented multi-parallel partial disassembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 262(C).
    15. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    16. Wanlin Yang & Zixiang Li & Chenyu Zheng & Zikai Zhang & Liping Zhang & Qiuhua Tang, 2024. "Multi-Objective Optimization for a Partial Disassembly Line Balancing Problem Considering Profit and Carbon Emission," Mathematics, MDPI, vol. 12(8), pages 1-19, April.
    17. Yicong Gao & Shanhe Lou & Hao Zheng & Jianrong Tan, 2023. "A data-driven method of selective disassembly planning at end-of-life under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 565-585, February.
    18. Wei Meng & Xiufen Zhang, 2020. "Optimization of Remanufacturing Disassembly Line Balance Considering Multiple Failures and Material Hazards," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    19. Ziyan Zhao & Pengkai Xiao & Jiacun Wang & Shixin Liu & Xiwang Guo & Shujin Qin & Ying Tang, 2023. "Improved Brain-Storm Optimizer for Disassembly Line Balancing Problems Considering Hazardous Components and Task Switching Time," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    20. Qi Zhang & Yang Xing & Man Yao & Jiacun Wang & Xiwang Guo & Shujin Qin & Liang Qi & Fuguang Huang, 2024. "An Improved Discrete Bat Algorithm for Multi-Objective Partial Parallel Disassembly Line Balancing Problem," Mathematics, MDPI, vol. 12(5), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:319:y:2022:i:2:d:10.1007_s10479-020-03902-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.