IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i6d10.1007_s10845-019-01519-3.html
   My bibliography  Save this article

On the end-of-life state oriented multi-objective disassembly line balancing problem

Author

Listed:
  • Lixia Zhu

    (Southwest Jiaotong University
    Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province)

  • Zeqiang Zhang

    (Southwest Jiaotong University
    Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province)

  • Yi Wang

    (Auburn University at Montgomery)

  • Ning Cai

    (Southwest Jiaotong University
    Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province)

Abstract

The biggest difference between a disassembly line and an assembly line is that there are many uncertainties in structure and quality of the disassembled products in a disassembly line. The disassembly line balancing problem, considering the effect of end-of-life states caused by the uncertainty of the structure or the quality of the disassembled products, is addressed in this paper. A multi-objective mathematical model for the addressed problem is built with three optimization goals: minimizing the number of workstations, minimizing the idle index and minimizing the number of resources. Then a multi-objective hybrid migrating birds optimization algorithm is proposed, which uses a greedy random search operation based on embedding mechanism to generate neighborhood individuals. To avoid the problem of easily being trapped into a local optimum by a basic migrating birds optimization algorithm, a reset mechanism based on simulated annealing operation is set up to accept other solutions with a certain probability, so that the algorithm can escape out of a local optimum. By solving disassembly examples of different scales in the literature and comparing with the existing algorithms, the effectiveness and superiority of the proposed multi-objective hybrid migrating birds optimization algorithm is validated. Finally, the proposed model and algorithm are applied to solving two disassembly instances, and the solving results are compared with the single-objective optimal solution solved by LINGO 11.0 solver and the basic migrating birds optimization algorithm to further identify the performance of the proposed algorithm.

Suggested Citation

  • Lixia Zhu & Zeqiang Zhang & Yi Wang & Ning Cai, 2020. "On the end-of-life state oriented multi-objective disassembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1403-1428, August.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01519-3
    DOI: 10.1007/s10845-019-01519-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01519-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01519-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seda Hezer & Yakup Kara, 2015. "A network-based shortest route model for parallel disassembly line balancing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1849-1865, March.
    2. Mohand Lounes Bentaha & Olga Battaïa & Alexandre Dolgui, 2015. "An exact solution approach for disassembly line balancing problem under uncertainty of the task processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1807-1818, March.
    3. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
    4. Yicong Gao & Qirui Wang & Yixiong Feng & Hao Zheng & Bing Zheng & Jianrong Tan, 2018. "An Energy-Saving Optimization Method of Dynamic Scheduling for Disassembly Line," Energies, MDPI, vol. 11(5), pages 1-18, May.
    5. F. Tevhide Altekin, 2017. "A comparison of piecewise linear programming formulations for stochastic disassembly line balancing," International Journal of Production Research, Taylor & Francis Journals, vol. 55(24), pages 7412-7434, December.
    6. Fang, Yilin & Liu, Quan & Li, Miqing & Laili, Yuanjun & Pham, Duc Truong, 2019. "Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations," European Journal of Operational Research, Elsevier, vol. 276(1), pages 160-174.
    7. Mehmet Ali Ilgin & Hakan Akçay & Ceyhun Araz, 2017. "Disassembly line balancing using linear physical programming," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6108-6119, October.
    8. R. Venkata Rao & Dhiraj P. Rai & J. Balic, 2019. "Multi-objective optimization of abrasive waterjet machining process using Jaya algorithm and PROMETHEE Method," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2101-2127, June.
    9. Mohand Lounes Bentaha & Alexandre Dolgui & Olga Battaïa & Robert J. Riggs & Jack Hu, 2018. "Profit-oriented partial disassembly line design: dealing with hazardous parts and task processing times uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 56(24), pages 7220-7242, December.
    10. Ali Koc & Ihsan Sabuncuoglu & Erdal Erel, 2009. "Two exact formulations for disassembly line balancing problems with task precedence diagram construction using an AND/OR graph," IISE Transactions, Taylor & Francis Journals, vol. 41(10), pages 866-881.
    11. Can B. Kalayci & Olcay Polat & Surendra M. Gupta, 2016. "A hybrid genetic algorithm for sequence-dependent disassembly line balancing problem," Annals of Operations Research, Springer, vol. 242(2), pages 321-354, July.
    12. Bentaha, Mohand Lounes & Battaïa, Olga & Dolgui, Alexandre & Hu, S. Jack, 2015. "Second order conic approximation for disassembly line design with joint probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 957-967.
    13. Jia Liu & Shuwei Wang, 2017. "Balancing Disassembly Line in Product Recovery to Promote the Coordinated Development of Economy and Environment," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    14. Wenyuan Wang & Daniel Y. Mo & Yue Wang & Mitchell M. Tseng, 2019. "Assessing the cost structure of component reuse in a product family for remanufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 575-587, February.
    15. McGovern, Seamus M. & Gupta, Surendra M., 2007. "A balancing method and genetic algorithm for disassembly line balancing," European Journal of Operational Research, Elsevier, vol. 179(3), pages 692-708, June.
    16. Yaping Ren & Daoyuan Yu & Chaoyong Zhang & Guangdong Tian & Leilei Meng & Xiaoqiang Zhou, 2017. "An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 55(24), pages 7302-7316, December.
    17. Lixia Zhu & Zeqiang Zhang & Yi Wang, 2018. "A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(24), pages 7354-7374, December.
    18. Feifeng Zheng & Junkai He & Feng Chu & Ming Liu, 2018. "A new distribution-free model for disassembly line balancing problem with stochastic task processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 56(24), pages 7341-7353, December.
    19. Xuhui Xia & Wei Liu & Zelin Zhang & Lei Wang & Jianhua Cao & Xiang Liu, 2019. "A Balancing Method of Mixed-model Disassembly Line in Random Working Environment," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junqi Liu & Zeqiang Zhang & Feng Chen & Silu Liu & Lixia Zhu, 2022. "A novel hybrid immune clonal selection algorithm for the constrained corridor allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 953-972, April.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Liang, Wei & Zhang, Zeqiang & Yin, Tao & Zhang, Yu & Wu, Tengfei, 2023. "Modelling and optimisation of energy consumption and profit-oriented multi-parallel partial disassembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 262(C).
    4. Yicong Gao & Shanhe Lou & Hao Zheng & Jianrong Tan, 2023. "A data-driven method of selective disassembly planning at end-of-life under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 565-585, February.
    5. Wenjie Wang & Guangdong Tian & Gang Yuan & Duc Truong Pham, 2023. "Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1065-1083, March.
    6. He, Junkai & Chu, Feng & Dolgui, Alexandre & Anjos, Miguel F., 2024. "Multi-objective disassembly line balancing and related supply chain management problems under uncertainty: Review and future trends," International Journal of Production Economics, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    2. Fang, Yilin & Liu, Quan & Li, Miqing & Laili, Yuanjun & Pham, Duc Truong, 2019. "Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations," European Journal of Operational Research, Elsevier, vol. 276(1), pages 160-174.
    3. He, Junkai & Chu, Feng & Dolgui, Alexandre & Anjos, Miguel F., 2024. "Multi-objective disassembly line balancing and related supply chain management problems under uncertainty: Review and future trends," International Journal of Production Economics, Elsevier, vol. 272(C).
    4. Ömer Faruk Yılmaz & Büşra Yazıcı, 2022. "Tactical level strategies for multi-objective disassembly line balancing problem with multi-manned stations: an optimization model and solution approaches," Annals of Operations Research, Springer, vol. 319(2), pages 1793-1843, December.
    5. Yusha Zhou & Xiuping Guo & Dong Li, 2022. "A dynamic programming approach to a multi-objective disassembly line balancing problem," Annals of Operations Research, Springer, vol. 311(2), pages 921-944, April.
    6. Junkai He & Feng Chu & Feifeng Zheng & Ming Liu, 2021. "A green-oriented bi-objective disassembly line balancing problem with stochastic task processing times," Annals of Operations Research, Springer, vol. 296(1), pages 71-93, January.
    7. Jianhua Cao & Xuhui Xia & Lei Wang & Zelin Zhang & Xiang Liu, 2019. "A Novel Multi-Efficiency Optimization Method for Disassembly Line Balancing Problem," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    8. Hu, Peng & Chu, Feng & Dolgui, Alexandre & Chu, Chengbin & Liu, Ming, 2024. "Integrated multi-product reverse supply chain design and disassembly line balancing under uncertainty," Omega, Elsevier, vol. 126(C).
    9. Peng Hu & Feng Chu & Yunfei Fang & Peng Wu, 2022. "Novel distribution-free model and method for stochastic disassembly line balancing with limited distributional information," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1423-1446, July.
    10. Xuhui Xia & Wei Liu & Zelin Zhang & Lei Wang & Jianhua Cao & Xiang Liu, 2019. "A Balancing Method of Mixed-model Disassembly Line in Random Working Environment," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    11. Süleyman Mete & Faruk Serin & Zeynel Abidin Çil & Erkan Çelik & Eren Özceylan, 2023. "A comparative analysis of meta-heuristic methods on disassembly line balancing problem with stochastic time," Annals of Operations Research, Springer, vol. 321(1), pages 371-408, February.
    12. Wei Meng & Xiufen Zhang, 2020. "Optimization of Remanufacturing Disassembly Line Balance Considering Multiple Failures and Material Hazards," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    13. Junyong Liang & Shunsheng Guo & Yunfei Zhang & Wenfang Liu & Shengwen Zhou, 2021. "Energy-Efficient Optimization of Two-Sided Disassembly Line Balance Considering Parallel Operation and Uncertain Using Multiobjective Flatworm Algorithm," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    14. Bentaha, Mohand-Lounes & Voisin, Alexandre & Marangé, Pascale, 2020. "A decision tool for disassembly process planning under end-of-life product quality," International Journal of Production Economics, Elsevier, vol. 219(C), pages 386-401.
    15. Liang, Wei & Zhang, Zeqiang & Yin, Tao & Zhang, Yu & Wu, Tengfei, 2023. "Modelling and optimisation of energy consumption and profit-oriented multi-parallel partial disassembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 262(C).
    16. Ziyan Zhao & Pengkai Xiao & Jiacun Wang & Shixin Liu & Xiwang Guo & Shujin Qin & Ying Tang, 2023. "Improved Brain-Storm Optimizer for Disassembly Line Balancing Problems Considering Hazardous Components and Task Switching Time," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    17. Wanlin Yang & Zixiang Li & Chenyu Zheng & Zikai Zhang & Liping Zhang & Qiuhua Tang, 2024. "Multi-Objective Optimization for a Partial Disassembly Line Balancing Problem Considering Profit and Carbon Emission," Mathematics, MDPI, vol. 12(8), pages 1-19, April.
    18. Yicong Gao & Shanhe Lou & Hao Zheng & Jianrong Tan, 2023. "A data-driven method of selective disassembly planning at end-of-life under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 565-585, February.
    19. Qi Zhang & Yang Xing & Man Yao & Jiacun Wang & Xiwang Guo & Shujin Qin & Liang Qi & Fuguang Huang, 2024. "An Improved Discrete Bat Algorithm for Multi-Objective Partial Parallel Disassembly Line Balancing Problem," Mathematics, MDPI, vol. 12(5), pages 1-22, February.
    20. Jia Liu & Shuwei Wang, 2017. "Balancing Disassembly Line in Product Recovery to Promote the Coordinated Development of Economy and Environment," Sustainability, MDPI, vol. 9(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01519-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.