IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v56y2018i24p7354-7374.html
   My bibliography  Save this article

A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation

Author

Listed:
  • Lixia Zhu
  • Zeqiang Zhang
  • Yi Wang

Abstract

The safety hazards existing in the process of disassembling waste products pose potential harms to the physical and mental health of the workers. In this article, these hazards involved in the disassembly operations are evaluated and taken into consideration in a disassembly line balancing problem. A multi-objective mathematical model is constructed to minimise the number of workstations, maximise the smoothing rate and minimise the average maximum hazard involved in the disassembly line. Subsequently, a Pareto firefly algorithm is proposed to solve the problem. The random key encoding method based on the smallest position rule is used to adapt the firefly algorithm to tackle the discrete optimisation problem of the disassembly line balancing. To avoid the search being trapped in a local optimum, a random perturbation strategy based on a swap operation is performed on the non-inferior solutions. The validity of the proposed algorithm is tested by comparing with two other algorithms in the existing literature using a 25-task phone disassembly case. Finally, the proposed algorithm is applied to solve a refrigerator disassembly line problem based on the field investigation and a comparison of the proposed Pareto firefly algorithm with another multi-objective firefly algorithm in the existing literature is performed to further identify the superior performance of the proposed Pareto firefly algorithm, and eight Pareto optimal solutions are obtained for decision makers to make a decision.

Suggested Citation

  • Lixia Zhu & Zeqiang Zhang & Yi Wang, 2018. "A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(24), pages 7354-7374, December.
  • Handle: RePEc:taf:tprsxx:v:56:y:2018:i:24:p:7354-7374
    DOI: 10.1080/00207543.2018.1471238
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1471238
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1471238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junyong Liang & Shunsheng Guo & Yunfei Zhang & Wenfang Liu & Shengwen Zhou, 2021. "Energy-Efficient Optimization of Two-Sided Disassembly Line Balance Considering Parallel Operation and Uncertain Using Multiobjective Flatworm Algorithm," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    2. Liang, Wei & Zhang, Zeqiang & Yin, Tao & Zhang, Yu & Wu, Tengfei, 2023. "Modelling and optimisation of energy consumption and profit-oriented multi-parallel partial disassembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 262(C).
    3. Jin-Ling Bei & Ming-Xin Zhang & Ji-Quan Wang & Hao-Hao Song & Hong-Yu Zhang, 2023. "Improved Hybrid Firefly Algorithm with Probability Attraction Model," Mathematics, MDPI, vol. 11(2), pages 1-59, January.
    4. Ömer Faruk Yılmaz & Büşra Yazıcı, 2022. "Tactical level strategies for multi-objective disassembly line balancing problem with multi-manned stations: an optimization model and solution approaches," Annals of Operations Research, Springer, vol. 319(2), pages 1793-1843, December.
    5. Muhammet Enes Akpınar & Mehmet Ali Ilgın & Hüseyin Aktaş, 2021. "Disassembly Line Balancing by Using Simulation Optimization," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 9(1), pages 63-84, June.
    6. Jianhua Cao & Xuhui Xia & Lei Wang & Zelin Zhang & Xiang Liu, 2019. "A Novel Multi-Efficiency Optimization Method for Disassembly Line Balancing Problem," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    7. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    8. Junkai He & Feng Chu & Feifeng Zheng & Ming Liu, 2021. "A green-oriented bi-objective disassembly line balancing problem with stochastic task processing times," Annals of Operations Research, Springer, vol. 296(1), pages 71-93, January.
    9. Lixia Zhu & Zeqiang Zhang & Yi Wang & Ning Cai, 2020. "On the end-of-life state oriented multi-objective disassembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1403-1428, August.
    10. Fang, Yilin & Liu, Quan & Li, Miqing & Laili, Yuanjun & Pham, Duc Truong, 2019. "Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations," European Journal of Operational Research, Elsevier, vol. 276(1), pages 160-174.
    11. Wei Meng & Xiufen Zhang, 2020. "Optimization of Remanufacturing Disassembly Line Balance Considering Multiple Failures and Material Hazards," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    12. Yusha Zhou & Xiuping Guo & Dong Li, 2022. "A dynamic programming approach to a multi-objective disassembly line balancing problem," Annals of Operations Research, Springer, vol. 311(2), pages 921-944, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:56:y:2018:i:24:p:7354-7374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.