IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v206y2025ics0047259x24001039.html
   My bibliography  Save this article

Gaussian dependence structure pairwise goodness-of-fit testing based on conditional covariance and the 20/60/20 rule

Author

Listed:
  • Woźny, Jakub
  • Jaworski, Piotr
  • Jelito, Damian
  • Pitera, Marcin
  • Wyłomańska, Agnieszka

Abstract

We present a novel data-oriented statistical framework that assesses the presumed Gaussian dependence structure in a pairwise setting. This refers to both multivariate normality and normal copula goodness-of-fit testing. The proposed test clusters the data according to the 20/60/20 rule and confronts conditional covariance (or correlation) estimates on the obtained subsets. The corresponding test statistic has a natural practical interpretation, desirable statistical properties, and asymptotic pivotal distribution under the multivariate normality assumption. We illustrate the usefulness of the introduced framework using extensive power simulation studies and show that our approach outperforms popular benchmark alternatives. Also, we apply the proposed methodology to exemplary commodity and equity market data.

Suggested Citation

  • Woźny, Jakub & Jaworski, Piotr & Jelito, Damian & Pitera, Marcin & Wyłomańska, Agnieszka, 2025. "Gaussian dependence structure pairwise goodness-of-fit testing based on conditional covariance and the 20/60/20 rule," Journal of Multivariate Analysis, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001039
    DOI: 10.1016/j.jmva.2024.105396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X24001039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2024.105396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    2. Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    3. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    4. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    5. Aldrich, J., 1995. "Correlations genuine and spurious in Pearson and Yule," Discussion Paper Series In Economics And Econometrics 9502, Economics Division, School of Social Sciences, University of Southampton.
    6. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    7. Dante Amengual & Enrique Sentana, 2020. "Is a Normal Copula the Right Copula?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 350-366, April.
    8. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    9. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    10. Owen, Joel & Rabinovitch, Ramon, 1983. "On the Class of Elliptical Distributions and Their Applications to the Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 38(3), pages 745-752, June.
    11. Jaworski, Piotr & Pitera, Marcin, 2020. "A note on conditional variance and characterization of probability distributions," Statistics & Probability Letters, Elsevier, vol. 163(C).
    12. Piotr Jaworski & Marcin Pitera, 2017. "A note on conditional covariance matrices for elliptical distributions," Papers 1703.00918, arXiv.org.
    13. Pafka, Szilárd & Kondor, Imre, 2004. "Estimated correlation matrices and portfolio optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 623-634.
    14. Jaworski, Piotr & Pitera, Marcin, 2017. "A note on conditional covariance matrices for elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 230-235.
    15. Damian Jelito & Marcin Pitera, 2021. "New fat-tail normality test based on conditional second moments with applications to finance," Statistical Papers, Springer, vol. 62(5), pages 2083-2108, October.
    16. Schepsmeier, Ulf, 2015. "Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 34-52.
    17. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damian Jelito & Marcin Pitera, 2021. "New fat-tail normality test based on conditional second moments with applications to finance," Statistical Papers, Springer, vol. 62(5), pages 2083-2108, October.
    2. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    3. Damian Jelito & Marcin Pitera, 2018. "New fat-tail normality test based on conditional second moments with applications to finance," Papers 1811.05464, arXiv.org, revised Apr 2020.
    4. Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
    5. Douglas J. Hodgson & Oliver Linton & Keith Vorkink, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639, December.
    6. Aloui, Riadh & Gupta, Rangan & Miller, Stephen M., 2016. "Uncertainty and crude oil returns," Energy Economics, Elsevier, vol. 55(C), pages 92-100.
    7. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    8. Fiorentini, Gabriele & Sentana, Enrique, 2021. "New testing approaches for mean–variance predictability," Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.
    9. Gatfaoui, Hayette, 2019. "Diversifying portfolios of U.S. stocks with crude oil and natural gas: A regime-dependent optimization with several risk measures," Energy Economics, Elsevier, vol. 80(C), pages 132-152.
    10. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    11. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    12. Jaworski, Piotr & Pitera, Marcin, 2020. "A note on conditional variance and characterization of probability distributions," Statistics & Probability Letters, Elsevier, vol. 163(C).
    13. Kewin Pk{a}czek & Damian Jelito & Marcin Pitera & Agnieszka Wy{l}oma'nska, 2025. "Statistical applications of the 20/60/20 rule in risk management and portfolio optimization," Papers 2504.02840, arXiv.org.
    14. Fredy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Empirical Performance of an ESG Assets Portfolio from US Market," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1569-1638, September.
    15. Boris Brodsky & Henry Penikas & Irina Safaryan, 2009. "Detection of Structural Breaks in Copula Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 16(4), pages 3-15.
    16. D. Ventosa-Santaulària, 2009. "Spurious Regression," Journal of Probability and Statistics, Hindawi, vol. 2009, pages 1-27, August.
    17. repec:hum:wpaper:sfb649dp2013-041 is not listed on IDEAS
    18. Lu Yang & Shigeyuki Hamori, 2013. "Dependence structure among international stock markets: a GARCH--copula analysis," Applied Financial Economics, Taylor & Francis Journals, vol. 23(23), pages 1805-1817, December.
    19. Yiran Chen & Giray Ökten, 2022. "A goodness-of-fit test for copulas based on the collision test," Statistical Papers, Springer, vol. 63(5), pages 1369-1385, October.
    20. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    21. Enrique Sentana, 2009. "The econometrics of mean-variance efficiency tests: a survey," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 65-101, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:206:y:2025:i:c:s0047259x24001039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.