IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.02840.html
   My bibliography  Save this paper

Statistical applications of the 20/60/20 rule in risk management and portfolio optimization

Author

Listed:
  • Kewin Pk{a}czek
  • Damian Jelito
  • Marcin Pitera
  • Agnieszka Wy{l}oma'nska

Abstract

This paper explores the applications of the 20/60/20 rule-a heuristic method that segments data into top-performing, average-performing, and underperforming groups-in mathematical finance. We review the statistical foundations of this rule and demonstrate its usefulness in risk management and portfolio optimization. Our study highlights three key applications. First, we apply the rule to stock market data, showing that it enables effective population clustering. Second, we introduce a novel, easy-to-implement method for extracting heavy-tail characteristics in risk management. Third, we integrate spatial reasoning based on the 20/60/20 rule into portfolio optimization, enhancing robustness and improving performance. To support our findings, we develop a new measure for quantifying tail heaviness and employ conditional statistics to reconstruct the unconditional distribution from the core data segment. This reconstructed distribution is tested on real financial data to evaluate whether the 20/60/20 segmentation effectively balances capturing extreme risks with maintaining the stability of central returns. Our results offer insights into financial data behavior under heavy-tailed conditions and demonstrate the potential of the 20/60/20 rule as a complementary tool for decision-making in finance.

Suggested Citation

  • Kewin Pk{a}czek & Damian Jelito & Marcin Pitera & Agnieszka Wy{l}oma'nska, 2025. "Statistical applications of the 20/60/20 rule in risk management and portfolio optimization," Papers 2504.02840, arXiv.org.
  • Handle: RePEc:arx:papers:2504.02840
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.02840
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaworski, Piotr & Pitera, Marcin, 2017. "A note on conditional covariance matrices for elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 230-235.
    2. Bielak, Łukasz & Grzesiek, Aleksandra & Janczura, Joanna & Wyłomańska, Agnieszka, 2021. "Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling," Resources Policy, Elsevier, vol. 74(C).
    3. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    4. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    5. Piotr Jaworski & Marcin Pitera, 2017. "A note on conditional covariance matrices for elliptical distributions," Papers 1703.00918, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Lin & Martin Thomas Falk, 2022. "Nordic stock market performance of the travel and leisure industry during the first wave of Covid-19 pandemic," Tourism Economics, , vol. 28(5), pages 1240-1257, August.
    2. Damian Jelito & Marcin Pitera, 2018. "New fat-tail normality test based on conditional second moments with applications to finance," Papers 1811.05464, arXiv.org, revised Apr 2020.
    3. Klein, Arne C., 2013. "Time-variations in herding behavior: Evidence from a Markov switching SUR model," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 291-304.
    4. Boubakri, Salem & Guillaumin, Cyriac, 2011. "Financial integration and currency risk premium in CEECs: Evidence from the ICAPM," Emerging Markets Review, Elsevier, vol. 12(4), pages 460-484.
    5. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    6. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2020. "Markov-Switching Stochastic Processes in an Active Trading Algorithm in the Main Latin-American Stock Markets," Mathematics, MDPI, vol. 8(6), pages 1-23, June.
    7. Jaworski, Piotr & Pitera, Marcin, 2020. "A note on conditional variance and characterization of probability distributions," Statistics & Probability Letters, Elsevier, vol. 163(C).
    8. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & María de la Cruz Del Río-Rama & José Álvarez-García, 2022. "Using Markov-Switching Models in US Stocks Optimal Portfolio Selection in a Black–Litterman Context (Part 1)," Mathematics, MDPI, vol. 10(8), pages 1-28, April.
    9. Al-Mohamed, Somar & Elkanj, Nasser & Gangopadhyay, Partha, 2018. "Time-Varying Integration of MENA Stock Markets," International Journal of Development and Conflict, Gokhale Institute of Politics and Economics, vol. 8(2), pages 85-114.
    10. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    11. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, Enero.
    12. Francesco Chincoli & Massimo Guidolin, 2017. "Linear and nonlinear predictability in investment style factors: multivariate evidence," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 476-509, October.
    13. Bekaert, Geert & Harvey, Campbell R, 1995. "Time-Varying World Market Integration," Journal of Finance, American Finance Association, vol. 50(2), pages 403-444, June.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Robert Cox Merton & Francisco Venegas-Martínez, 2021. "Financial Science Trends and Perspectives: A Review Article," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-15, Enero - M.
    16. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.
    17. Yuki Shigeta, 2016. "Optimality of Naive Investment Strategies in Dynamic MeanVariance Optimization Problems with Multiple Priors," Discussion papers e-16-004, Graduate School of Economics , Kyoto University.
    18. Carl Chiarella & Roberto Dieci & Xue-Zhong He & Kai Li, 2013. "An evolutionary CAPM under heterogeneous beliefs," Annals of Finance, Springer, vol. 9(2), pages 185-215, May.
    19. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 13, July-Dece.
    20. Woźny, Jakub & Jaworski, Piotr & Jelito, Damian & Pitera, Marcin & Wyłomańska, Agnieszka, 2025. "Gaussian dependence structure pairwise goodness-of-fit testing based on conditional covariance and the 20/60/20 rule," Journal of Multivariate Analysis, Elsevier, vol. 206(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.02840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.