IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i3p334-344.html
   My bibliography  Save this article

Integral representations of one-dimensional projections for multivariate stable densities

Author

Listed:
  • Matsui, Muneya
  • Takemura, Akimichi

Abstract

We consider the numerical evaluation of one-dimensional projections of general multivariate stable densities introduced by Abdul-Hamid and Nolan [H. Abdul-Hamid, J.P. Nolan, Multivariate stable densities as functions of one dimensional projections, J. Multivariate Anal. 67 (1998) 80-89]. In their approach higher order derivatives of one-dimensional densities are used, which seems to be cumbersome in practice. Furthermore there are some difficulties for even dimensions. In order to overcome these difficulties we obtain the explicit finite-interval integral representation of one-dimensional projections for all dimensions. For this purpose we utilize the imaginary part of complex integration, whose real part corresponds to the derivative of the one-dimensional inversion formula. We also give summaries on relations between various parametrizations of stable multivariate density and its one-dimensional projection.

Suggested Citation

  • Matsui, Muneya & Takemura, Akimichi, 2009. "Integral representations of one-dimensional projections for multivariate stable densities," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 334-344, March.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:3:p:334-344
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00134-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byczkowski, T. & Nolan, J. P. & Rajput, B., 1993. "Approximation of Multidimensional Stable Densities," Journal of Multivariate Analysis, Elsevier, vol. 46(1), pages 13-31, July.
    2. Abdul-Hamid, Husein & Nolan, John P., 1998. "Multivariate Stable Densities as Functions of One Dimensional Projections," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 80-89, October.
    3. Pivato, Marcus & Seco, Luis, 2003. "Estimating the spectral measure of a multivariate stable distribution via spherical harmonic analysis," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 219-240, November.
    4. Nolan, John P., 1998. "Parameterizations and modes of stable distributions," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 187-195, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsionas, Mike G., 2016. "Bayesian analysis of multivariate stable distributions using one-dimensional projections," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 185-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:3:p:334-344. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.