IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v148y2013i6p2666-2695.html
   My bibliography  Save this article

Higher order game dynamics

Author

Listed:
  • Laraki, Rida
  • Mertikopoulos, Panayotis

Abstract

Continuous-time game dynamics are typically first order systems where payoffs determine the growth rate of the playersʼ strategy shares. In this paper, we investigate what happens beyond first order by viewing payoffs as higher order forces of change, specifying e.g. the acceleration of the playersʼ evolution instead of its velocity (a viewpoint which emerges naturally when it comes to aggregating empirical data of past instances of play). To that end, we derive a wide class of higher order game dynamics, generalizing first order imitative dynamics, and, in particular, the replicator dynamics. We show that strictly dominated strategies become extinct in n-th order payoff-monotonic dynamics n orders as fast as in the corresponding first order dynamics; furthermore, in stark contrast to first order, weakly dominated strategies also become extinct for n⩾2. All in all, higher order payoff-monotonic dynamics lead to the elimination of weakly dominated strategies, followed by the iterated deletion of strictly dominated strategies, thus providing a dynamic justification of the well-known epistemic rationalizability process of Dekel and Fudenberg [7]. Finally, we also establish a higher order analogue of the folk theorem of evolutionary game theory, and we show that convergence to strict equilibria in n-th order dynamics is n orders as fast as in first order.

Suggested Citation

  • Laraki, Rida & Mertikopoulos, Panayotis, 2013. "Higher order game dynamics," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2666-2695.
  • Handle: RePEc:eee:jetheo:v:148:y:2013:i:6:p:2666-2695
    DOI: 10.1016/j.jet.2013.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053113001439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jet.2013.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. repec:dau:papers:123456789/1014 is not listed on IDEAS
    3. Hofbauer, Josef & Weibull, Jorgen W., 1996. "Evolutionary Selection against Dominated Strategies," Journal of Economic Theory, Elsevier, vol. 71(2), pages 558-573, November.
    4. Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-1399, November.
    5. Sandholm, William H. & DokumacI, Emin & Lahkar, Ratul, 2008. "The projection dynamic and the replicator dynamic," Games and Economic Behavior, Elsevier, vol. 64(2), pages 666-683, November.
    6. , & , H., 2011. "Survival of dominated strategies under evolutionary dynamics," Theoretical Economics, Econometric Society, vol. 6(3), September.
    7. Dekel, Eddie & Fudenberg, Drew, 1990. "Rational behavior with payoff uncertainty," Journal of Economic Theory, Elsevier, vol. 52(2), pages 243-267, December.
    8. Samuelson, Larry & Zhang, Jianbo, 1992. "Evolutionary stability in asymmetric games," Journal of Economic Theory, Elsevier, vol. 57(2), pages 363-391, August.
    9. Fudenberg, D. & Harris, C., 1992. "Evolutionary dynamics with aggregate shocks," Journal of Economic Theory, Elsevier, vol. 57(2), pages 420-441, August.
    10. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    11. S. D. Flåm & J. Morgan, 2004. "Newtonian Mechanics And Nash Play," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 181-194.
    12. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    13. Balkenborg, Dieter & Hofbauer, Josef & Kuzmics, Christoph, 2016. "Refined best reply correspondence and dynamics," Center for Mathematical Economics Working Papers 451, Center for Mathematical Economics, Bielefeld University.
    14. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-867, May.
    15. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
    16. Josef Hofbauer & Sylvain Sorin & Yannick Viossat, 2009. "Time Average Replicator and Best-Reply Dynamics," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 263-269, May.
    17. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    18. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuval Heller & Christoph Kuzmics, 2019. "Renegotiation and Coordination with Private Values," Graz Economics Papers 2019-10, University of Graz, Department of Economics.
    2. Heller, Yuval & Kuzmics, Christoph, 2020. "Communication, Renegotiation and Coordination with Private Values (Extended Version)," MPRA Paper 102926, University Library of Munich, Germany, revised 26 Jul 2021.
    3. Pierre Coucheney & Bruno Gaujal & Panayotis Mertikopoulos, 2015. "Penalty-Regulated Dynamics and Robust Learning Procedures in Games," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 611-633, March.
    4. Yannick Viossat, 2015. "Evolutionary dynamics and dominated strategies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 91-113, April.
    5. Heller, Yuval & Kuzmics, Christoph, 2024. "Communication, renegotiation and coordination with private values," Games and Economic Behavior, Elsevier, vol. 143(C), pages 51-76.
    6. Christoph Kuzmics & Daniel Rodenburger, 2020. "A case of evolutionarily stable attainable equilibrium in the laboratory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 685-721, October.
    7. Bernergård, Axel & Mohlin, Erik, 2019. "Evolutionary selection against iteratively weakly dominated strategies," Games and Economic Behavior, Elsevier, vol. 117(C), pages 82-97.
    8. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    9. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    10. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yannick Viossat, 2015. "Evolutionary dynamics and dominated strategies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 91-113, April.
    2. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    3. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Reinoud Joosten, 2009. "Paul Samuelson's critique and equilibrium concepts in evolutionary game theory," Papers on Economics and Evolution 2009-16, Philipps University Marburg, Department of Geography.
    5. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    6. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    7. Berger, Ulrich & Hofbauer, Josef, 2006. "Irrational behavior in the Brown-von Neumann-Nash dynamics," Games and Economic Behavior, Elsevier, vol. 56(1), pages 1-6, July.
    8. Saeed Hadikhanloo & Rida Laraki & Panayotis Mertikopoulos & Sylvain Sorin, 2022. "Learning in nonatomic games, part Ⅰ: Finite action spaces and population games," Post-Print hal-03767995, HAL.
    9. Mertikopoulos, Panayotis & Sandholm, William H., 2018. "Riemannian game dynamics," Journal of Economic Theory, Elsevier, vol. 177(C), pages 315-364.
    10. Sylvain Sorin, 2023. "Continuous Time Learning Algorithms in Optimization and Game Theory," Dynamic Games and Applications, Springer, vol. 13(1), pages 3-24, March.
    11. Pierre Coucheney & Bruno Gaujal & Panayotis Mertikopoulos, 2015. "Penalty-Regulated Dynamics and Robust Learning Procedures in Games," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 611-633, March.
    12. Weibull, Jörgen W., 1997. "What have we learned from Evolutionary Game Theory so far?," Working Paper Series 487, Research Institute of Industrial Economics, revised 26 Oct 1998.
    13. Sandholm, William H., 2005. "Excess payoff dynamics and other well-behaved evolutionary dynamics," Journal of Economic Theory, Elsevier, vol. 124(2), pages 149-170, October.
    14. Tsakas, Elias & Voorneveld, Mark, 2009. "The target projection dynamic," Games and Economic Behavior, Elsevier, vol. 67(2), pages 708-719, November.
    15. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    16. Weibull, Jorgen W., 1998. "Evolution, rationality and equilibrium in games," European Economic Review, Elsevier, vol. 42(3-5), pages 641-649, May.
    17. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.
    18. , & , H. & ,, 2015. "Sampling best response dynamics and deterministic equilibrium selection," Theoretical Economics, Econometric Society, vol. 10(1), January.
    19. Balkenborg, Dieter & Schlag, Karl H., 2007. "On the evolutionary selection of sets of Nash equilibria," Journal of Economic Theory, Elsevier, vol. 133(1), pages 295-315, March.
    20. Fabrizio Germano, 2007. "Stochastic Evolution of Rules for Playing Finite Normal Form Games," Theory and Decision, Springer, vol. 62(4), pages 311-333, May.

    More about this item

    Keywords

    Game dynamics; Higher order dynamical systems; (Weakly) dominated strategies; Learning; Replicator dynamics; Stability of equilibria;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:148:y:2013:i:6:p:2666-2695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.