IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Using methods from machine learning to evaluate behavioral models of choice under risk and ambiguity

Listed author(s):
  • Peysakhovich, Alexander
  • Naecker, Jeffrey

How can behavioral science incorporate tools from machine learning (ML)? We propose that ML models can be used as upper bounds for the “explainable” variance in a given data set and thus serve as upper bounds for the potential power of a theory. We demonstrate this method in the domain of uncertainty. We ask over 600 individuals to make a total of 6000 choices with randomized parameters and compare standard economic models to ML models. In the domain of risk, a version of expected utility that allows for non-linear probability weighting (as in cumulative prospect theory) and individual-level parameters performs as well out-of-sample as ML techniques. By contrast, in the domain of ambiguity, two of the most widely studied models (a linear version of maximin preferences and second order expected utility) fail to compete with the ML methods. We open the “black boxes” of the ML methods and show that under risk we “rediscover” expected utility with probability weighting. However, in the case of ambiguity the form of ambiguity aversion implied by our ML models suggests that there is gain from theoretical work on a portable model of ambiguity aversion. Our results highlight ways in which behavioral scientists can incorporate ML techniques in their daily practice to gain genuinely new insights.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0167268116301846
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Behavior & Organization.

Volume (Year): 133 (2017)
Issue (Month): C ()
Pages: 373-384

as
in new window

Handle: RePEc:eee:jeborg:v:133:y:2017:i:c:p:373-384
DOI: 10.1016/j.jebo.2016.08.017
Contact details of provider: Web page: http://www.elsevier.com/locate/jebo

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Gary Charness & Matthew Rabin, 2002. "Understanding Social Preferences with Simple Tests," The Quarterly Journal of Economics, Oxford University Press, vol. 117(3), pages 817-869.
  2. Aurelien Baillon & Olivier L'Haridon & Laetitia Placido, 2011. "Ambiguity Models and the Machina Paradoxes," American Economic Review, American Economic Association, vol. 101(4), pages 1547-1560, June.
  3. John Horton & David Rand & Richard Zeckhauser, 2011. "The online laboratory: conducting experiments in a real labor market," Experimental Economics, Springer;Economic Science Association, vol. 14(3), pages 399-425, September.
  4. Segal, Uzi, 1987. "The Ellsberg Paradox and Risk Aversion: An Anticipated Utility Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(1), pages 175-202, February.
  5. Mohammed Abdellaoui & Aurelien Baillon & Laetitia Placido & Peter P. Wakker, 2011. "The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation," American Economic Review, American Economic Association, vol. 101(2), pages 695-723, April.
  6. Christopher Chabris & David Laibson & Carrie Morris & Jonathon Schuldt & Dmitry Taubinsky, 2008. "Individual laboratory-measured discount rates predict field behavior," Journal of Risk and Uncertainty, Springer, vol. 37(2), pages 237-269, December.
  7. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
  8. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
  9. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
  10. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
  11. Camerer, Colin & Weber, Martin, 1992. "Recent Developments in Modeling Preferences: Uncertainty and Ambiguity," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 325-370, October.
  12. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, Oxford University Press, vol. 75(4), pages 643-669.
  13. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
  14. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
  15. Mark J. Machina, 2009. "Risk, Ambiguity, and the Rank-Dependence Axioms," American Economic Review, American Economic Association, vol. 99(1), pages 385-392, March.
  16. Ido Erev & Eyal Ert & Alvin E. Roth, 2010. "A Choice Prediction Competition for Market Entry Games: An Introduction," Games, MDPI, Open Access Journal, vol. 1(2), pages 1-20, May.
  17. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
  18. Yoram Halevy, 2007. "Ellsberg Revisited: An Experimental Study," Econometrica, Econometric Society, vol. 75(2), pages 503-536, 03.
  19. Fudenberg, Drew & Peysakhovich, Alexander, 2014. "Recency, Records and Recaps: Learning and Non-Equilibrium Behavior in a Simple Decision Problem," Scholarly Articles 27755296, Harvard University Department of Economics.
  20. Mohammed Abdellaoui & Peter Klibanoff & Laetitia Placido, 2016. "Experiments on compound risk in relation to simple risk and to ambiguity," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01301618, HAL.
  21. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
  22. repec:hal:journl:hal-01301618 is not listed on IDEAS
  23. Drew Fudenberg & Peysakhovich, A, 2014. "Recency, Records and Recaps: Learning and Non-Equilibrium Behavior in a Simple Decision Problem," Working Paper 167691, Harvard University OpenScholar.
  24. Faruk Gul & Wolfgang Pesendorfer, 2014. "Expected Uncertain Utility Theory," Econometrica, Econometric Society, vol. 82(1), pages 1-39, 01.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:133:y:2017:i:c:p:373-384. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.