IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Smooth Model of Decision,Making Under Ambiguity

  • Sujoy Mukerji
  • Peter Klibanoff

We propose and axiomatize a model of preferences over acts such that the decision maker evaluates acts according to the expectation (over a set of probability measures) of an increasing transformation of an act`s expected utility. This expectation is calculated using a subjective probability over the set of probability measures that the decision maker thinks are relevant given her subjective information. A key feature of our model is that it achieves a separation between ambiguity, identified as a characteristic of the decision maker`s subjective information, and ambiguity attitude, a characteristic of the decision maker`s tastes. We show that attitudes towards risk are characterized by the shape of the von Neumann-Morgenstern utility function, as usual, while attitudes towards ambiguity are characterized by the shape of the increasing transformation applied to expected utilities. We show that the negative exponential form of this transformation is the special case of constant ambiguity aversion. Ambiguity itself is defined behaviorally and is shown to be characterized by properties of the subjective set of measures. This characterization of ambiguity is formally related to the definitions of subjective ambiguity advanced by Epstein-Zhang (2001) and Ghirardato-Marinacci (2002). One advantage of this model is that the well-developed machinery for dealing with risk attitudes can be applied as well to ambiguity attitudes. The model is also distinct from many in the literature on ambiguity in that it allows smooth, rather than kinked, indifference curves. This leads to different behavior and improved tractability, while still sharing the main features (e.g. Ellsberg`s Paradox, etc.). The Maxmin EU model (e.g., Gilboa and Schmeidler (1989)) with a given set of measures may be seen as an extreme case of our model with infinite ambiguity aversion. Two illustrative applications to portfolio choice are offered.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.economics.ox.ac.uk/materials/working_papers/paper113.pdf
Download Restriction: no

Paper provided by University of Oxford, Department of Economics in its series Economics Series Working Papers with number 113.

as
in new window

Length:
Date of creation: 01 Jul 2002
Date of revision:
Handle: RePEc:oxf:wpaper:113
Contact details of provider: Postal: Manor Rd. Building, Oxford, OX1 3UQ
Web page: http://www.economics.ox.ac.uk/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ghirardato, Paolo & Marinacci, Massimo, 2002. "Ambiguity Made Precise: A Comparative Foundation," Journal of Economic Theory, Elsevier, vol. 102(2), pages 251-289, February.
  2. Grant, S & Kajii, A & Polak, B, 1997. "Temporal Resolution of Uncertainty and Recursive Non-Expected Utility Models," Papers 324, Australian National University - Department of Economics.
  3. Sarin, Rakesh K & Wakker, Peter, 1992. "A Simple Axiomatization of Nonadditive Expected Utility," Econometrica, Econometric Society, vol. 60(6), pages 1255-72, November.
  4. Graham Loomes & Uzi Segal, . "Observing Different Orders of Risk Aversion," Discussion Papers 92/5, Department of Economics, University of York.
  5. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-87, May.
  6. David M Kreps & Evan L Porteus, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Levine's Working Paper Archive 625018000000000009, David K. Levine.
  7. Epstein, Larry G & Zhang, Jiankang, 2001. "Subjective Probabilities on Subjectively Unambiguous Events," Econometrica, Econometric Society, vol. 69(2), pages 265-306, March.
  8. Uzi Segal & Avia Spivak, 1988. "First Order Versus Second Order Risk Aversion," UCLA Economics Working Papers 540, UCLA Department of Economics.
  9. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
  10. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
  11. Uzi Segal, 1985. "The Ellsberg Paradox and Risk Aversion: An Anticipated Utility Approach," UCLA Economics Working Papers 362, UCLA Department of Economics.
  12. Larry G. Epstein & Jiankang Zhang, 1999. "Subjective Probabilities on Subjectively Unambiguous Events," Carleton Economic Papers 99-18, Carleton University, Department of Economics.
  13. Epstein, Larry G & Wang, Tan, 1994. "Intertemporal Asset Pricing Under Knightian Uncertainty," Econometrica, Econometric Society, vol. 62(2), pages 283-322, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:113. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Caroline Wise)

The email address of this maintainer does not seem to be valid anymore. Please ask Caroline Wise to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.