IDEAS home Printed from
   My bibliography  Save this paper

Recency, Records and Recaps: Learning and Non-Equilibrium Behavior in a Simple Decision Problem


  • Drew Fudenberg
  • Peysakhovich, A


Nash equilibrium takes optimization as a primitive, but suboptimal behavior can persist in simple stochastic decision problems. This has motivated the development of other equilibrium concepts such as cursed equilibrium and behavioral equilibrium. We experimentally study a simple adverse selection (or “lemons†) problem and find that learning models that heavily discount past information (i.e. display recency bias) explain patterns of behavior better than Nash, cursed or behavioral equilibrium. Providing counterfactual information or a record of past outcomes does little to aid convergence to optimal strategies, but providing sample averages (“recaps†) gets individuals most of the way to optimality. Thus recency effects are not solely due to limited memory but stem from some other form of cognitive constraints. Our results show the importance of going beyond static optimization and incorporating features of human learning into economic models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Drew Fudenberg & Peysakhovich, A, 2014. "Recency, Records and Recaps: Learning and Non-Equilibrium Behavior in a Simple Decision Problem," Working Paper 167691, Harvard University OpenScholar.
  • Handle: RePEc:qsh:wpaper:167691

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Peysakhovich, Alexander & Naecker, Jeffrey, 2017. "Using methods from machine learning to evaluate behavioral models of choice under risk and ambiguity," Journal of Economic Behavior & Organization, Elsevier, vol. 133(C), pages 373-384.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qsh:wpaper:167691. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Brandon). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.