IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v37y2013i11p4353-4367.html
   My bibliography  Save this article

Estimating the basis risk of index-linked hedging strategies using multivariate extreme value theory

Author

Listed:
  • Kellner, Ralf
  • Gatzert, Nadine

Abstract

This paper studies the empirical quantification of basis risk in the context of index-linked hedging strategies. Basis risk refers to the risk of non-payment of the index-linked instrument, given that the hedger’s loss exceeds some critical level. The quantification of such risk measures from empirical data can be done in various ways and requires special consideration of the dependence structure between the index and the company’s losses as well as the estimation of the tails of a distribution. In this context, previous literature shows that extreme value theory can be superior to traditional methods with respect to estimating quantile risk measures such as the value at risk. Thus, the aim of this paper is to conduct an empirical analysis of basis risk using multivariate extreme value theory and extreme value copulas to estimate the underlying risk processes and their dependence structure in order to obtain a more adequate picture of basis risk associated with index-linked hedging strategies. Our results emphasize that the application of extreme value theory leads to better fits of the tails of the marginal distributions in the considered stock price sample and that traditional methods in regard to estimating marginal distributions tend to overestimate basis risk, while basis risk can in contrast be higher when taking into account extreme value copulas.

Suggested Citation

  • Kellner, Ralf & Gatzert, Nadine, 2013. "Estimating the basis risk of index-linked hedging strategies using multivariate extreme value theory," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4353-4367.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:11:p:4353-4367
    DOI: 10.1016/j.jbankfin.2013.07.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037842661300318X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2013.07.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linda L. Golden & Mulong Wang & Chuanhou Yang, 2007. "Handling Weather Related Risks Through the Financial Markets: Considerations of Credit Risk, Basis Risk, and Hedging," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 319-346, June.
    2. Zhou, Chen, 2010. "Dependence structure of risk factors and diversification effects," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 531-540, June.
    3. Juri, Alessandro & Wuthrich, Mario V., 2002. "Copula convergence theorems for tail events," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 405-420, June.
    4. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    5. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
    6. Brodin, Erik & Rootzén, Holger, 2009. "Univariate and bivariate GPD methods for predicting extreme wind storm losses," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 345-356, June.
    7. Kojadinovic, Ivan & Yan, Jun, 2010. "Comparison of three semiparametric methods for estimating dependence parameters in copula models," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 52-63, August.
    8. Marsaglia, George & Tsang, Wai Wan & Wang, Jingbo, 2003. "Evaluating Kolmogorov's Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i18).
    9. John Major, 1999. "Index Hedge Performance: Insurer Market Penetration and Basis Risk," NBER Chapters, in: The Financing of Catastrophe Risk, pages 391-432, National Bureau of Economic Research, Inc.
    10. Cummins, J. David & Lalonde, David & Phillips, Richard D., 2004. "The basis risk of catastrophic-loss index securities," Journal of Financial Economics, Elsevier, vol. 71(1), pages 77-111, January.
    11. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    12. Mark Manfredo & Timothy Richards, 2009. "Hedging with weather derivatives: a role for options in reducing basis risk," Applied Financial Economics, Taylor & Francis Journals, vol. 19(2), pages 87-97.
    13. Gatzert, Nadine & Kellner, Ralf, 2011. "The influence of non-linear dependencies on the basis risk of industry loss warranties," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 132-144, July.
    14. Debbie Dupuis & Bruce Jones, 2006. "Multivariate Extreme Value Theory And Its Usefulness In Understanding Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(4), pages 1-27.
    15. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    16. James T. Moser & Billy Helms, 1990. "An examination of basis risk due to estimation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 10(5), pages 457-467, October.
    17. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    18. Cotter, John, 2001. "Margin exceedences for European stock index futures using extreme value theory," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1475-1502, August.
    19. Chou-Wen Wang & Ting-Yi Wu, 2008. "Pricing futures options with basis risk: evidence from S&P 500 futures options," Applied Financial Economics, Taylor & Francis Journals, vol. 18(19), pages 1561-1567.
    20. Longin, Francois, 2005. "The choice of the distribution of asset returns: How extreme value theory can help?," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 1017-1035, April.
    21. Charles C. Yang & Patrick L. Brockett & Min-Ming Wen, 2009. "Basis risk and hedging efficiency of weather derivatives," Journal of Risk Finance, Emerald Group Publishing, vol. 10(5), pages 517-536, November.
    22. L. K. Hotta & E. C. Lucas & H. P Palaro, 2008. "Estimation of VaR Using Copula and Extreme Value Theory," Multinational Finance Journal, Multinational Finance Journal, vol. 12(3-4), pages 205-218, September.
    23. Figlewski, Stephen, 1984. "Hedging Performance and Basis Risk in Stock Index Futures," Journal of Finance, American Finance Association, vol. 39(3), pages 657-669, July.
    24. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    2. Ceballos, Francisco, 2016. "Estimating spatial basis risk in rainfall index insurance: Methodology and application to excess rainfall insurance in Uruguay," IFPRI discussion papers 1595, International Food Policy Research Institute (IFPRI).
    3. Daly, Kevin & Batten, Jonathan A. & Mishra, Anil V. & Choudhury, Tonmoy, 2019. "Contagion risk in global banking sector," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    4. He, Junnan & Tang, Qihe & Zhang, Huan, 2016. "Risk reducers in convex order," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 80-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Robert A. Jones & Christophe Pérignon, 2013. "Derivatives Clearing, Default Risk, and Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 373-400, June.
    3. Patrick L. Brockett & Mulong Wang & Chuanhou Yang, 2005. "Weather Derivatives and Weather Risk Management," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 8(1), pages 127-140, March.
    4. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
    5. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    7. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    8. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    9. Chollete, Loran & Ismailescu, Iuliana & Lu, Ching-Chih, 2014. "Dependence between Extreme Events in the Real and Financial Sectors," UiS Working Papers in Economics and Finance 2014/12, University of Stavanger.
    10. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    11. Chollete, Loran & de la Pena , Victor & Lu, Ching-Chih, 2009. "International Diversification: An Extreme Value Approach," UiS Working Papers in Economics and Finance 2009/26, University of Stavanger.
    12. Viviana Fernández, 2006. "Extremal dependence in European capital markets," Journal of Applied Economics, Universidad del CEMA, vol. 9, pages 275-293, November.
    13. Maarten van Oordt & Chen Zhou, 2011. "Systematic risk under extremely adverse market condition," DNB Working Papers 281, Netherlands Central Bank, Research Department.
    14. Cotter, John, 2004. "Modelling extreme financial returns of global equity markets," MPRA Paper 3532, University Library of Munich, Germany.
    15. Gatzert, Nadine & Kellner, Ralf, 2011. "The influence of non-linear dependencies on the basis risk of industry loss warranties," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 132-144, July.
    16. Dias, Alexandra, 2014. "Semiparametric estimation of multi-asset portfolio tail risk," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 398-408.
    17. Tong, Bin & Wu, Chongfeng & Zhou, Chunyang, 2013. "Modeling the co-movements between crude oil and refined petroleum markets," Energy Economics, Elsevier, vol. 40(C), pages 882-897.
    18. Sehgal, Sanjay & Pandey, Piyush & Diesting, Florent, 2017. "Examining dynamic currency linkages amongst South Asian economies: An empirical study," Research in International Business and Finance, Elsevier, vol. 42(C), pages 173-190.
    19. Chun-Pin Hsu & Chin-Wen Huang & Wan-Jiun Chiou, 2012. "Effectiveness of copula-extreme value theory in estimating value-at-risk: empirical evidence from Asian emerging markets," Review of Quantitative Finance and Accounting, Springer, vol. 39(4), pages 447-468, November.
    20. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Nguyen, Duc Khuong, 2011. "Global financial crisis, extreme interdependences, and contagion effects: The role of economic structure?," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 130-141, January.

    More about this item

    Keywords

    Extreme value theory; Index-linked hedging instruments; Copulas;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:11:p:4353-4367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.