IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v44y2009i3p345-356.html
   My bibliography  Save this article

Univariate and bivariate GPD methods for predicting extreme wind storm losses

Author

Listed:
  • Brodin, Erik
  • Rootzén, Holger

Abstract

Wind storm and hurricane risks are attracting increased attention as a result of recent catastrophic events. The aim of this paper is to select, tailor, and develop extreme value methods for use in wind storm insurance. The methods are applied to the 1982-2005 losses for the largest Swedish insurance company, the Länsförsäkringar group. Both a univariate and a new bivariate Generalized Pareto Distribution (GPD) gave models which fitted the data well. The bivariate model led to lower estimates of risk, except for extreme cases, but taking statistical uncertainty into account the two models lead to qualitatively similar results. We believe that the bivariate model provided the most realistic picture of the real uncertainties. It additionally made it possible to explore the effects of changes in the insurance portfolio, and showed that loss distributions are rather insensitive to portfolio changes. We found a small trend in the sizes of small individual claims, but no other trends. Finally, we believe that companies should develop systematic ways of thinking about "not yet seen" disasters.

Suggested Citation

  • Brodin, Erik & Rootzén, Holger, 2009. "Univariate and bivariate GPD methods for predicting extreme wind storm losses," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 345-356, June.
  • Handle: RePEc:eee:insuma:v:44:y:2009:i:3:p:345-356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00145-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hélène Cossette & Thierry Duchesne & Étienne Marceau, 2003. "Modeling Catastrophes and their Impact on Insurance Portfolios," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng-wen Wang & Ling Tian, 2016. "How much catastrophe insurance fund needed in China for the ‘big one’? An estimation with comonotonicity method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 55-68, October.
    2. Alexandre Mornet & Thomas Opitz & Michel Luzi & Stéphane Loisel, 2015. "Index for predicting insurance claims from wind storms with an application in France," Post-Print hal-01081758, HAL.
    3. Kellner, Ralf & Gatzert, Nadine, 2013. "Estimating the basis risk of index-linked hedging strategies using multivariate extreme value theory," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4353-4367.
    4. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.
    5. Maud Thomas & Holger Rootzén, 2022. "Real‐time prediction of severe influenza epidemics using extreme value statistics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 376-394, March.
    6. Alexandre Mornet & Thomas Opitz & Michel Luzi & Stéphane Loisel, 2015. "Index for Predicting Insurance Claims from Wind Storms with an Application in France," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 2029-2056, November.
    7. Rootzen, Holger & Segers, Johan & Wadsworth, Jenny, 2016. "Multivariate peaks over thresholds models," LIDAM Discussion Papers ISBA 2016018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Pai, Jeffrey & Li, Yunxian & Yang, Aijun & Li, Chenxu, 2022. "Earthquake parametric insurance with Bayesian spatial quantile regression," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 1-12.
    9. Alexandre Mornet & Thomas Opitz & Michel Luzi & Stéphane Loisel, 2014. "Construction of an Index that links Wind Speeds and Strong Claim Rate of Insurers after a Storm in France," Working Papers hal-01081758, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kellenberg, Derek K. & Mobarak, Ahmed Mushfiq, 2008. "Does rising income increase or decrease damage risk from natural disasters?," Journal of Urban Economics, Elsevier, vol. 63(3), pages 788-802, May.
    2. Patricia Born & Randy Dumm & Mark E. Johnson, 2023. "Epistemic uncertainty in catastrophe models—A base level examination," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 26(2), pages 247-269, July.
    3. Rafał Wójcik & Charlie Wusuo Liu, 2022. "Bivariate Copula Trees for Gross Loss Aggregation with Positively Dependent Risks," Risks, MDPI, vol. 10(8), pages 1-24, July.
    4. Claude Lefèvre & Stéphane Loisel & Pierre Montesinos, 2020. "Bounding basis risk using s-convex orders on Beta-unimodal distributions," Working Papers hal-02611208, HAL.
    5. Victor Cardenas, 2024. "Financial climate risk: a review of recent advances and key challenges," Papers 2404.07331, arXiv.org.
    6. Ilana Vinnik & Tatjana Miljkovic, 2025. "Modeling the Inter-Arrival Time Between Severe Storms in the United States Using Finite Mixtures," Risks, MDPI, vol. 13(2), pages 1-24, January.
    7. Fabio Pizzutilo & Elisabetta Venezia, 2018. "Are catastrophe bonds effective financial instruments in the transport and infrastructure industries? Evidence from international financial markets," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(2), pages 256-267, April.
    8. Mercè Claramunt, M. & Lefèvre, Claude & Loisel, Stéphane & Montesinos, Pierre, 2022. "Basis risk management and randomly scaled uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 123-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:44:y:2009:i:3:p:345-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.