IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i8p144-d868968.html
   My bibliography  Save this article

Bivariate Copula Trees for Gross Loss Aggregation with Positively Dependent Risks

Author

Listed:
  • Rafał Wójcik

    (Verisk Extreme Event Solutions, Financial Modeling Group, Lafayette City Center, 2 Avenue de Lafayette, 2nd Floor, Boston, MA 02111, USA
    These authors contributed equally to this work.)

  • Charlie Wusuo Liu

    (Verisk Extreme Event Solutions, Financial Modeling Group, Lafayette City Center, 2 Avenue de Lafayette, 2nd Floor, Boston, MA 02111, USA
    These authors contributed equally to this work.)

Abstract

We propose several numerical algorithms to compute the distribution of gross loss in a positively dependent catastrophe insurance portfolio. Hierarchical risk aggregation is performed using bivariate copula trees. Six common parametric copula families are studied. At every branching node, the distribution of a sum of risks is obtained by discrete copula convolution. This approach is compared to approximation by a weighted average of independent and comonotonic distributions. The weight is a measure of positive dependence through variance of the aggregate risk. During gross loss accumulation, the marginals are distorted by application of insurance financial terms, and the value of the mixing weight is impacted. To accelerate computations, we capture this effect using the ratio of standard deviations of pre-term and post-term risks, followed by covariance scaling. We test the performance of our algorithms using three examples of complex insurance portfolios subject to hurricane and earthquake catastrophes.

Suggested Citation

  • Rafał Wójcik & Charlie Wusuo Liu, 2022. "Bivariate Copula Trees for Gross Loss Aggregation with Positively Dependent Risks," Risks, MDPI, vol. 10(8), pages 1-24, July.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:8:p:144-:d:868968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/8/144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/8/144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. KOCH, Inge & DE SCHEPPER, Ann, 2006. "The comonotonicity coefficient: A new measure of positive dependence in a multivariate setting," Working Papers 2006030, University of Antwerp, Faculty of Business and Economics.
    2. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    3. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    4. Raydonal Ospina & Silvia Ferrari, 2010. "Inflated beta distributions," Statistical Papers, Springer, vol. 51(1), pages 111-126, January.
    5. Christofides, Tasos C. & Vaggelatou, Eutichia, 2004. "A connection between supermodular ordering and positive/negative association," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 138-151, January.
    6. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2005. "Some notions of multivariate positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 13-26, August.
    7. Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
    8. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    9. Jean-Philippe Bruneton, 2011. "Copula-based Hierarchical Aggregation of Correlated Risks. The behaviour of the diversification benefit in Gaussian and Lognormal Trees," Papers 1111.1113, arXiv.org, revised Nov 2011.
    10. Rafał Wójcik & Charlie Wusuo Liu & Jayanta Guin, 2019. "Direct and Hierarchical Models for Aggregating Spatially Dependent Catastrophe Risks," Risks, MDPI, vol. 7(2), pages 1-22, May.
    11. Qing Xiao & Shaowu Zhou, 2019. "Matching a correlation coefficient by a Gaussian copula," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(7), pages 1728-1747, April.
    12. Hélène Cossette & Thierry Duchesne & Étienne Marceau, 2003. "Modeling Catastrophes and their Impact on Insurance Portfolios," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 1-22.
    13. Raluca Vernic, 2016. "On the Distribution of a Sum of Sarmanov Distributed Random Variables," Journal of Theoretical Probability, Springer, vol. 29(1), pages 118-142, March.
    14. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    15. Arbenz, Philipp & Hummel, Christoph & Mainik, Georg, 2012. "Copula based hierarchical risk aggregation through sample reordering," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 122-133.
    16. Daniël Linders & Ben Stassen, 2016. "The multivariate Variance Gamma model: basket option pricing and calibration," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 555-572, April.
    17. Koch, Inge & De Schepper, Ann, 2011. "Measuring Comonotonicity in M-Dimensional Vectors," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 191-213, May.
    18. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafał Wójcik & Charlie Wusuo Liu & Jayanta Guin, 2019. "Direct and Hierarchical Models for Aggregating Spatially Dependent Catastrophe Risks," Risks, MDPI, vol. 7(2), pages 1-22, May.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Dong Hwan Oh & Andrew J. Patton, 2021. "Dynamic Factor Copula Models with Estimated Cluster Assignments," Finance and Economics Discussion Series 2021-029r1, Board of Governors of the Federal Reserve System (U.S.), revised 06 May 2022.
    4. Ying Zhang & Chuancun Yin, 2014. "A new multivariate dependence measure based on comonotonicity," Papers 1410.7845, arXiv.org.
    5. Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
    6. Afhami, Bahareh & Rezapour, Mohsen & Madadi, Mohsen & Maroufy, Vahed, 2023. "A comonotonic approximation to optimal terminal wealth under a multivariate Merton model with correlated jump risk," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    7. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
    8. Becky Tang & Henry A. Frye & Alan E. Gelfand & John A. Silander, 2023. "Zero-Inflated Beta Distribution Regression Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 117-137, March.
    9. Müller, Alfred & Reuber, Matthias, 2023. "A copula-based time series model for global horizontal irradiation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 869-883.
    10. Diks, Cees & Panchenko, Valentyn & Sokolinskiy, Oleg & van Dijk, Dick, 2014. "Comparing the accuracy of multivariate density forecasts in selected regions of the copula support," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 79-94.
    11. Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
    12. Bäuerle Nicole & Schmock Uwe, 2012. "Dependence properties of dynamic credit risk models," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 243-268, August.
    13. Aitazaz Ali Raja & Pierre Pinson & Jalal Kazempour & Sergio Grammatico, 2022. "A Market for Trading Forecasts: A Wagering Mechanism," Papers 2205.02668, arXiv.org, revised Oct 2022.
    14. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    15. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    16. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    17. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    18. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    19. Quan, Hao & Yang, Dazhi, 2020. "Probabilistic solar irradiance transposition models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    20. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:8:p:144-:d:868968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.