IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v16y2016i4p555-572.html
   My bibliography  Save this article

The multivariate Variance Gamma model: basket option pricing and calibration

Author

Listed:
  • Daniël Linders
  • Ben Stassen

Abstract

In this paper, we propose a methodology for pricing basket options in the multivariate Variance Gamma model introduced in Luciano and Schoutens [ Quant. Finance 6 (5), 385--402]. The stock prices composing the basket are modelled by time-changed geometric Brownian motions with a common Gamma subordinator. Using the additivity property of comonotonic stop-loss premiums together with Gauss-Laguerre polynomials, we express the basket option price as a linear combination of Black & Scholes prices. Furthermore, our new basket option pricing formula enables us to calibrate the multivariate VG model in a fast way. As an illustration, we show that even in the constrained situation where the pairwise correlations between the Brownian motions are assumed to be equal, the multivariate VG model can closely match the observed Dow Jones index options.

Suggested Citation

  • Daniël Linders & Ben Stassen, 2016. "The multivariate Variance Gamma model: basket option pricing and calibration," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 555-572, April.
  • Handle: RePEc:taf:quantf:v:16:y:2016:i:4:p:555-572
    DOI: 10.1080/14697688.2015.1043934
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2015.1043934
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2015.1043934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman V. Ivanov, 2018. "A Credit-Risk Valuation under the Variance-Gamma Asset Return," Risks, MDPI, vol. 6(2), pages 1-25, May.
    2. Rafał Wójcik & Charlie Wusuo Liu, 2022. "Bivariate Copula Trees for Gross Loss Aggregation with Positively Dependent Risks," Risks, MDPI, vol. 10(8), pages 1-24, July.
    3. Luca De Gennaro Aquino & Carole Bernard, 2019. "Bounds on Multi-asset Derivatives via Neural Networks," Papers 1911.05523, arXiv.org, revised Nov 2020.
    4. Pier Francesco Procacci & Tomaso Aste, 2018. "Forecasting market states," Papers 1807.05836, arXiv.org, revised May 2019.
    5. Roman V. Ivanov, 2018. "Option Pricing In The Variance-Gamma Model Under The Drift Jump," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-19, June.
    6. Amit K. Sinha, 2021. "The reliability of geometric Brownian motion forecasts of S&P500 index values," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1444-1462, December.
    7. Afhami, Bahareh & Rezapour, Mohsen & Madadi, Mohsen & Maroufy, Vahed, 2023. "A comonotonic approximation to optimal terminal wealth under a multivariate Merton model with correlated jump risk," Applied Mathematics and Computation, Elsevier, vol. 444(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:16:y:2016:i:4:p:555-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.