IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i2p376-394.html
   My bibliography  Save this article

Real‐time prediction of severe influenza epidemics using extreme value statistics

Author

Listed:
  • Maud Thomas
  • Holger Rootzén

Abstract

Each year, seasonal influenza epidemics cause hundreds of thousands of deaths worldwide and put high loads on health care systems. A main concern for resource planning is the risk of exceptionally severe epidemics. Taking advantage of recent results on multivariate Generalized Pareto models in extreme value statistics we develop methods for real‐time prediction of the risk that an ongoing influenza epidemic will be exceptionally severe and for real‐time detection of anomalous epidemics and use them for prediction and detection of anomalies for influenza epidemics in France. Quality of predictions is assessed on observed and simulated data.

Suggested Citation

  • Maud Thomas & Holger Rootzén, 2022. "Real‐time prediction of severe influenza epidemics using extreme value statistics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 376-394, March.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:2:p:376-394
    DOI: 10.1111/rssc.12537
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12537
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    2. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2018. "Multivariate peaks over thresholds models," LIDAM Reprints ISBA 2018005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. René Michel, 2009. "Parametric Estimation Procedures in Multivariate Generalized Pareto Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 60-75, March.
    4. Kyriaki Kalimeri & Matteo Delfino & Ciro Cattuto & Daniela Perrotta & Vittoria Colizza & Caroline Guerrisi & Clement Turbelin & Jim Duggan & John Edmunds & Chinelo Obi & Richard Pebody & Ana O Franco , 2019. "Unsupervised extraction of epidemic syndromes from participatory influenza surveillance self-reported symptoms," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-21, April.
    5. Brodin, Erik & Rootzén, Holger, 2009. "Univariate and bivariate GPD methods for predicting extreme wind storm losses," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 345-356, June.
    6. Maud Thomas & Magali Lemaitre & Mark L Wilson & Cécile Viboud & Youri Yordanov & Hans Wackernagel & Fabrice Carrat, 2016. "Applications of Extreme Value Theory in Public Health," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-7, July.
    7. Jiangpeng Chen & Xun Lei & Li Zhang & Bin Peng, 2015. "Using Extreme Value Theory Approaches to Forecast the Probability of Outbreak of Highly Pathogenic Influenza in Zhejiang, China," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-10, February.
    8. Andrew Rambaut & Oliver G. Pybus & Martha I. Nelson & Cecile Viboud & Jeffery K. Taubenberger & Edward C. Holmes, 2008. "The genomic and epidemiological dynamics of human influenza A virus," Nature, Nature, vol. 453(7195), pages 615-619, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rootzen, Holger & Segers, Johan & Wadsworth, Jenny, 2016. "Multivariate peaks over thresholds models," LIDAM Discussion Papers ISBA 2016018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    3. Gavoille, Nicolas & Zasova, Anna, 2023. "What we pay in the shadows: Labor tax evasion, minimum wage hike and employment," Journal of Public Economics, Elsevier, vol. 228(C).
    4. Amanda Fitzgerald & Naoise Mac Giollabhui & Louise Dolphin & Robert Whelan & Barbara Dooley, 2018. "Dissociable psychosocial profiles of adolescent substance users," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-16, August.
    5. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    6. Zhiyuan Chen & Joseph L.-H. Tsui & Jun Cai & Shuo Su & Cécile Viboud & Louis Plessis & Philippe Lemey & Moritz U. G. Kraemer & Hongjie Yu, 2025. "Disruption of seasonal influenza circulation and evolution during the 2009 H1N1 and COVID-19 pandemics in Southeastern Asia," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Jie-Huei Wang & Cheng-Yu Liu & You-Ruei Min & Zih-Han Wu & Po-Lin Hou, 2024. "Cancer Diagnosis by Gene-Environment Interactions via Combination of SMOTE-Tomek and Overlapped Group Screening Approaches with Application to Imbalanced TCGA Clinical and Genomic Data," Mathematics, MDPI, vol. 12(14), pages 1-24, July.
    8. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    9. Daniela Cisneros & Arnab Hazra & Raphaël Huser, 2024. "Spatial Wildfire Risk Modeling Using a Tree-Based Multivariate Generalized Pareto Mixture Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 320-345, June.
    10. Vijaykrishna Dhanasekaran & Sheena Sullivan & Kimberly M. Edwards & Ruopeng Xie & Arseniy Khvorov & Sophie A. Valkenburg & Benjamin J. Cowling & Ian G. Barr, 2022. "Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Kin Keung Lai & Ming Wang & Jiangze Du, 2019. "Modeling and Predicting Infectious Diseases Cases with Climatic Factors in Hong Kong," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 23(1), pages 17147-17150, November.
    12. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    13. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    14. Montorsi, Carlotta & Fusco, Alessio & Van Kerm, Philippe & Bordas, Stéphane P.A., 2024. "Predicting depression in old age: Combining life course data with machine learning," Economics & Human Biology, Elsevier, vol. 52(C).
    15. Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
    16. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
    18. Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
    19. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    20. Merlijn Breugel & Cancan Qi & Zhongli Xu & Casper-Emil T. Pedersen & Ilya Petoukhov & Judith M. Vonk & Ulrike Gehring & Marijn Berg & Marnix Bügel & Orestes A. Carpaij & Erick Forno & Andréanne Morin , 2022. "Nasal DNA methylation at three CpG sites predicts childhood allergic disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:2:p:376-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.