IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i3d10.1007_s00180-021-01080-9.html
   My bibliography  Save this article

Double threshold receiver operating characteristic plot for three-modal continuous predictors

Author

Listed:
  • Arthur De Sá Ferreira

    (Postgraduate Program of Rehabilitation Science, Centro Universitário Augusto Motta)

  • Ney Meziat-Filho

    (Postgraduate Program of Rehabilitation Science, Centro Universitário Augusto Motta)

  • Ana Paula Antunes Ferreira

    (Postgraduate Program of Rehabilitation Science, Centro Universitário Augusto Motta
    Instituto Brasileiro de Osteopatia)

Abstract

The receiver-operating characteristics (stROC) analysis depicts the performance of a population-wise bimodal-distributed, quantitative continuous random variable for distinguishing dichotomous outcomes using a single threshold. However, test results that have three-modal distributions show no-better-than-chance discriminative performance. This study proposes a parameter-free ROC plot analysis with an application to random variables with a population-wise three-modal distribution. A double-threshold ROC plot (dtROC) is constructed by replacing the single threshold by a double threshold. The sensitivity–specificity coordinates are selected for maximizing the sensitivity for a given specificity value. The generalizability of the method is investigated using computational simulations of a mixture of Gaussian distributions. The clinical application is studied by secondary data analysis of a palpation test to locate the C7 spinous process using the modified thorax-rib static method. The simulation shows a poor discrimination performance of the stROC plot (area under the ROC plot [AUROC] 0.9 in 51% of the simulated samples). The accuracy of the palpation test using dtROC (AUROC = 0.652 95%CI = [0.597; 0.775], thresholds = 24.2 to 26.8 cm) was higher as compared to the ROC (AUROC = 0.517 95%CI = [0.385; 0.659]; threshold = 25.45 cm). The dtROC plot analysis outperforms the stROC plot when applied to test results with three-modal distributions.

Suggested Citation

  • Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01080-9
    DOI: 10.1007/s00180-021-01080-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01080-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01080-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jørgen Hilden, 1991. "The Area under the ROC Curve and Its Competitors," Medical Decision Making, , vol. 11(2), pages 95-101, June.
    2. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    2. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    3. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    4. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    5. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    6. Tzu-Hsuan Lin & Jehn-Ruey Jiang, 2021. "Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    7. Apostolos Giannoulidis & Anastasios Gounaris & Athanasios Naskos & Nikodimos Nikolaidis & Daniel Caljouw, 2025. "Engineering and evaluating an unsupervised predictive maintenance solution: a cold-forming press case-study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2121-2139, March.
    8. Dorian Knoblauch & Jürgen Großmann, 2023. "Towards a Risk-Based Continuous Auditing-Based Certification for Machine Learning," The Review of Socionetwork Strategies, Springer, vol. 17(2), pages 255-273, October.
    9. Alfred Krzywicki & David Muchlinski & Benjamin E. Goldsmith & Arcot Sowmya, 2022. "From academia to policy makers: a methodology for real-time forecasting of infrequent events," Journal of Computational Social Science, Springer, vol. 5(2), pages 1489-1510, November.
    10. Dueñas, Marco & Ortiz, Víctor & Riccaboni, Massimo & Serti, Francesco, 2021. "Assessing the Impact of COVID-19 on Trade: a Machine Learning Counterfactual Analysis," Working papers 79, Red Investigadores de Economía.
    11. Simon Tranberg Bodilsen & Søren Albeck Nielsen & Michael Rosholm, 2025. "Measuring employment readiness for hard-to-place individuals," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-12, December.
    12. Wei-Hsuan Lo-Ciganic & Julie M Donohue & Eric G Hulsey & Susan Barnes & Yuan Li & Courtney C Kuza & Qingnan Yang & Jeanine Buchanich & James L Huang & Christina Mair & Debbie L Wilson & Walid F Gellad, 2021. "Integrating human services and criminal justice data with claims data to predict risk of opioid overdose among Medicaid beneficiaries: A machine-learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-18, March.
    13. Nica-Avram, Georgiana & Harvey, John & Smith, Gavin & Smith, Andrew & Goulding, James, 2021. "Identifying food insecurity in food sharing networks via machine learning," Journal of Business Research, Elsevier, vol. 131(C), pages 469-484.
    14. Ali J. Ghandour & Huda Hammoud & Samar Al-Hajj, 2020. "Analyzing Factors Associated with Fatal Road Crashes: A Machine Learning Approach," IJERPH, MDPI, vol. 17(11), pages 1-13, June.
    15. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    16. Soumadeep Saha & Utpal Garain & Arijit Ukil & Arpan Pal & Sundeep Khandelwal, 2023. "MedTric : A clinically applicable metric for evaluation of multi-label computational diagnostic systems," PLOS ONE, Public Library of Science, vol. 18(8), pages 1-19, August.
    17. Fisnik Doko & Slobodan Kalajdziski & Igor Mishkovski, 2021. "Credit Risk Model Based on Central Bank Credit Registry Data," JRFM, MDPI, vol. 14(3), pages 1-17, March.
    18. Abouelmagd THM, 2018. "A New Flexible Distribution Based on the Zero Truncated Poisson Distribution: Mathematical Properties and Applications to Lifetime Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 10-16, August.
    19. Bouvatier, Vincent & El Ouardi, Sofiane, 2023. "Credit gaps as banking crisis predictors: A different tune for middle- and low-income countries," Emerging Markets Review, Elsevier, vol. 54(C).
    20. Faith M. Hartley & Aaron E. Maxwell & Rick E. Landenberger & Zachary J. Bortolot, 2022. "Forest Type Differentiation Using GLAD Phenology Metrics, Land Surface Parameters, and Machine Learning," Geographies, MDPI, vol. 2(3), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01080-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.