IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i1p251-269.html
   My bibliography  Save this article

Dynamic time series modelling and forecasting of COVID-19 in Norway

Author

Listed:
  • Bårdsen, Gunnar
  • Nymoen, Ragnar

Abstract

A framework for forecasting new COVID-19 cases jointly with hospital admissions and hospital beds with COVID-19 cases is presented. This project, dubbed CovidMod, produced 21 days ahead forecasts each working day from March 2021 to April 2022. Comparison of RMSFEs from that period, with the RMSFEs of the Norwegian Institute of Public Health (NIPH), favours the CovidMod forecasts, both for new cases and for hospital beds. Another comparison, with the short term forecasts produced by the Cardt method, shows little difference. Next, we present a new model where smooth transition regression is used as a feasible method to include forecasted effects of non-linear policy responses to the deviation between hospital beds and hospital bed capacity, on the forecasts of the original three variables. The forecasting performance of the model with endogenous policy effects is demonstrated retrospectively. It is suggested as a complementary approach to follow when the forecasted variables are generated from processes that include policy responses as realistic features.

Suggested Citation

  • Bårdsen, Gunnar & Nymoen, Ragnar, 2025. "Dynamic time series modelling and forecasting of COVID-19 in Norway," International Journal of Forecasting, Elsevier, vol. 41(1), pages 251-269.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:251-269
    DOI: 10.1016/j.ijforecast.2024.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    2. Gunnar Bårdsen & Dag Kolsrud & Ragnar Nymoen, 2017. "Forecast robustness in macroeconometric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(6), pages 629-639, September.
    3. Johansen, Leif, 1972. "On the optimal use of forecasts in economic policy decisions," Journal of Public Economics, Elsevier, vol. 1(1), pages 1-24, April.
    4. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    5. Ragnar Nymoen, 2019. "Dynamic Econometrics for Empirical Macroeconomic Modelling," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 11479, February.
    6. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    7. Skrove Falch, Nina & Nymoen, Ragnar, 2011. "The accuracy of a forecast targeting central bank," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-36.
    8. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    9. Øyvind Eitrheim & Eilev S. Jansen & Ragnar Nymoen, 2002. "Progress from forecast failure -- the Norwegian consumption function," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 40-64, June.
    10. Michael Lingzhi Li & Hamza Tazi Bouardi & Omar Skali Lami & Thomas A. Trikalinos & Nikolaos Trichakis & Dimitris Bertsimas, 2023. "Forecasting COVID-19 and Analyzing the Effect of Government Interventions," Operations Research, INFORMS, vol. 71(1), pages 184-201, January.
    11. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2021. "The Value Of Robust Statistical Forecasts In The Covid-19 Pandemic," National Institute Economic Review, National Institute of Economic and Social Research, vol. 256, pages 19-43, April.
    12. Doornik, Jurgen A. & Castle, Jennifer L. & Hendry, David F., 2022. "Short-term forecasting of the coronavirus pandemic," International Journal of Forecasting, Elsevier, vol. 38(2), pages 453-466.
    13. Hyndman, Rob J., 2023. "Forecasting, causality and feedback," International Journal of Forecasting, Elsevier, vol. 39(2), pages 558-560.
    14. Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunnar BÃ¥rdsen & Ragnar Nymoen, 2023. "Dynamic time series modelling and forecasting of COVID-19 in Norway," Working Paper Series 19623, Department of Economics, Norwegian University of Science and Technology.
    2. Bårdsen, Gunnar & Nymoen, Ragnar, 2023. "Dynamic time series modelling and forecasting of COVID-19 in Norway," Memorandum 3/2023, Oslo University, Department of Economics.
    3. Difang Huang & Ying Liang & Boyao Wu & Yanyi Ye, 2025. "Estimating the impact of social distance policy in mitigating COVID-19 spread with factor-based imputation approach," Empirical Economics, Springer, vol. 68(2), pages 585-601, February.
    4. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Facing Economic Shifts, Climate Change and Evolving Pandemics," Econometrics, MDPI, vol. 10(1), pages 1-21, December.
    5. Bardsen, Gunnar & Eitrheim, Oyvind & Jansen, Eilev S. & Nymoen, Ragnar, 2005. "The Econometrics of Macroeconomic Modelling," OUP Catalogue, Oxford University Press, number 9780199246502, Decembrie.
    6. Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022. "Short-term Covid-19 forecast for latecomers," International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
    7. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    8. Lokman Gunduz & Ahmet Faruk Aysan & Rifgi Bugra Bagci & Hatice Karahan, 2024. "Explosive Behavior in COVID-19 and Policy Responses: Lessons Learned for Public Health Management," SAGE Open, , vol. 14(1), pages 21582440231, March.
    9. Difang Huang & Ying Liang & Boyao Wu & Yanyi Ye, 2024. "Estimating the Impact of Social Distance Policy in Mitigating COVID-19 Spread with Factor-Based Imputation Approach," Papers 2405.12180, arXiv.org.
    10. Zanini, Fabio C. & Irwin, Scott H. & Schnitkey, Gary D. & Sherrick, Bruce J., 2000. "Estimating Farm-Level Yield Distributions For Corn And Soybeans In Illinois," 2000 Annual meeting, July 30-August 2, Tampa, FL 21720, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    12. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    13. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    14. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    15. Sibel Cengiz & Afsin Sahin, 2014. "Modelling nonlinear behavior of labor force participation rate by STAR: An application for Turkey," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 7(1), pages 113-127, April.
    16. Po-Chin Wu & Chung-Chih Lee, 2018. "The non-linear impact of monetary policy on international reserves: macroeconomic variables nexus," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(1), pages 165-185, February.
    17. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
    18. Bel, K. & Paap, R., 2013. "Modeling the impact of forecast-based regime switches on macroeconomic time series," Econometric Institute Research Papers EI 2013-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    20. Sanders, Dwight R. & Manfredo, Mark R., 2006. "Forecasting Basis Levels in the Soybean Complex: A Comparison of Time Series Methods," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(3), pages 513-523, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:251-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.