Dynamic time series modelling and forecasting of COVID-19 in Norway
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2024.05.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002.
"Smooth Transition Autoregressive Models — A Survey Of Recent Developments,"
Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
- van Dijk, D.J.C. & Terasvirta, T. & Franses, Ph.H.B.F., 2000. "Smooth transition autoregressive models - A survey of recent developments," Econometric Institute Research Papers EI 2000-23/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- van Dijk, Dick & Teräsvirta, Timo & Franses, Philip Hans, 2000. "Smooth Transition Autoregressive Models - A Survey of Recent Developments," SSE/EFI Working Paper Series in Economics and Finance 380, Stockholm School of Economics, revised 17 Jan 2001.
- Gunnar Bårdsen & Dag Kolsrud & Ragnar Nymoen, 2017.
"Forecast robustness in macroeconometric models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(6), pages 629-639, September.
- Gunnar Bårdsen & Dag Kolsrud & Ragnar Nymoen, 2012. "Forecast robustness in macroeconometric models," Working Paper Series 13712, Department of Economics, Norwegian University of Science and Technology.
- Johansen, Leif, 1972. "On the optimal use of forecasts in economic policy decisions," Journal of Public Economics, Elsevier, vol. 1(1), pages 1-24, April.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- Ragnar Nymoen, 2019. "Dynamic Econometrics for Empirical Macroeconomic Modelling," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 11479, February.
- Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
- Skrove Falch, Nina & Nymoen, Ragnar, 2011.
"The accuracy of a forecast targeting central bank,"
Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-36.
- Falch, Nina Skrove & Nymoen, Ragnar, 2011. "The accuracy of a forecast targeting central bank," Economics Discussion Papers 2011-6, Kiel Institute for the World Economy (IfW Kiel).
- Li, Shaoran & Linton, Oliver, 2021.
"When will the Covid-19 pandemic peak?,"
Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
- Oliver Linton, 2020. "When will the Covid-19 pandemic peak?," CeMMAP working papers CWP11/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Li, S. & Linton, O., 2020. "When will the Covid-19 pandemic peak?," Cambridge Working Papers in Economics 2025, Faculty of Economics, University of Cambridge.
- Øyvind Eitrheim & Eilev S. Jansen & Ragnar Nymoen, 2002.
"Progress from forecast failure -- the Norwegian consumption function,"
Econometrics Journal, Royal Economic Society, vol. 5(1), pages 40-64, June.
- Eitrheim,O. & Jansen,E.S. & Nymoen,R., 2000. "Progress from forecast failure : the Norwegian consumption function," Memorandum 32/2000, Oslo University, Department of Economics.
- Michael Lingzhi Li & Hamza Tazi Bouardi & Omar Skali Lami & Thomas A. Trikalinos & Nikolaos Trichakis & Dimitris Bertsimas, 2023. "Forecasting COVID-19 and Analyzing the Effect of Government Interventions," Operations Research, INFORMS, vol. 71(1), pages 184-201, January.
- Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2021. "The Value Of Robust Statistical Forecasts In The Covid-19 Pandemic," National Institute Economic Review, National Institute of Economic and Social Research, vol. 256, pages 19-43, April.
- Doornik, Jurgen A. & Castle, Jennifer L. & Hendry, David F., 2022. "Short-term forecasting of the coronavirus pandemic," International Journal of Forecasting, Elsevier, vol. 38(2), pages 453-466.
- Hyndman, Rob J., 2023. "Forecasting, causality and feedback," International Journal of Forecasting, Elsevier, vol. 39(2), pages 558-560.
- Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gunnar BÃ¥rdsen & Ragnar Nymoen, 2023. "Dynamic time series modelling and forecasting of COVID-19 in Norway," Working Paper Series 19623, Department of Economics, Norwegian University of Science and Technology.
- Bårdsen, Gunnar & Nymoen, Ragnar, 2023. "Dynamic time series modelling and forecasting of COVID-19 in Norway," Memorandum 3/2023, Oslo University, Department of Economics.
- Difang Huang & Ying Liang & Boyao Wu & Yanyi Ye, 2025. "Estimating the impact of social distance policy in mitigating COVID-19 spread with factor-based imputation approach," Empirical Economics, Springer, vol. 68(2), pages 585-601, February.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Facing Economic Shifts, Climate Change and Evolving Pandemics," Econometrics, MDPI, vol. 10(1), pages 1-21, December.
- Bardsen, Gunnar & Eitrheim, Oyvind & Jansen, Eilev S. & Nymoen, Ragnar, 2005. "The Econometrics of Macroeconomic Modelling," OUP Catalogue, Oxford University Press, number 9780199246502, Decembrie.
- Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022.
"Short-term Covid-19 forecast for latecomers,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
- Marcelo Medeiros & Alexandre Street & Davi Vallad~ao & Gabriel Vasconcelos & Eduardo Zilberman, 2020. "Short-Term Covid-19 Forecast for Latecomers," Papers 2004.07977, arXiv.org, revised Sep 2021.
- Fernández-Villaverde, Jesús & Jones, Charles I., 2022.
"Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities,"
Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
- Fernández-Villaverde, Jesús & Jones, Chad, 2020. "Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities," CEPR Discussion Papers 14711, C.E.P.R. Discussion Papers.
- Jesús Fernández-Villaverde & Charles I. Jones, 2020. "Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities," NBER Working Papers 27128, National Bureau of Economic Research, Inc.
- Lokman Gunduz & Ahmet Faruk Aysan & Rifgi Bugra Bagci & Hatice Karahan, 2024. "Explosive Behavior in COVID-19 and Policy Responses: Lessons Learned for Public Health Management," SAGE Open, , vol. 14(1), pages 21582440231, March.
- Difang Huang & Ying Liang & Boyao Wu & Yanyi Ye, 2024. "Estimating the Impact of Social Distance Policy in Mitigating COVID-19 Spread with Factor-Based Imputation Approach," Papers 2405.12180, arXiv.org.
- Zanini, Fabio C. & Irwin, Scott H. & Schnitkey, Gary D. & Sherrick, Bruce J., 2000. "Estimating Farm-Level Yield Distributions For Corn And Soybeans In Illinois," 2000 Annual meeting, July 30-August 2, Tampa, FL 21720, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024.
"Testing Granger non-causality in expectiles,"
Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
- Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2022. "Testing Granger Non-Causality in Expectiles," Working Papers 202207, University of Liverpool, Department of Economics.
- Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2023. "Testing Granger Non-Causality in Expectiles," University of East Anglia School of Economics Working Paper Series 2023-02, School of Economics, University of East Anglia, Norwich, UK..
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Alagidede, Paul & Panagiotidis, Theodore, 2009.
"Modelling stock returns in Africa's emerging equity markets,"
International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
- Paul Alagidede & Theodore Panagiotidis, 2009. "Modelling stock returns in Africa’s emerging equity markets," Discussion Paper Series 2009_01, Department of Economics, University of Macedonia, revised Jan 2009.
- Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," Stirling Economics Discussion Papers 2009-04, University of Stirling, Division of Economics.
- Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008.
"Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?,"
Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
- Allan Timmermann & Graham Elliott & Ivana Komunjer, 2004. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Econometric Society 2004 North American Summer Meetings 601, Econometric Society.
- Graham Elliott & Ivana Komunjer & Allan Timmermann, 2005. "Biases In Macroeconomic Forecasts: Irrationality Or Asymmetric Loss?," CAMA Working Papers 2005-14, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Sibel Cengiz & Afsin Sahin, 2014.
"Modelling nonlinear behavior of labor force participation rate by STAR: An application for Turkey,"
International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 7(1), pages 113-127, April.
- Cengiz, Sibel & Sahin, Afsin, 2013. "Modelling Nonlinear Behavior of Labor Force Participation Rate by STAR: An Application for Turkey," MPRA Paper 47805, University Library of Munich, Germany, revised 07 May 2013.
- Po-Chin Wu & Chung-Chih Lee, 2018. "The non-linear impact of monetary policy on international reserves: macroeconomic variables nexus," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(1), pages 165-185, February.
- Luca Benati & Paolo Surico, 2008.
"Evolving U.S. Monetary Policy and The Decline of Inflation Predictability,"
Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
- Surico, Paolo & Benati, Luca, 2007. "Evolving U.S. monetary policy and the decline of inflation predictability," Working Paper Series 824, European Central Bank.
- Bel, K. & Paap, R., 2013. "Modeling the impact of forecast-based regime switches on macroeconomic time series," Econometric Institute Research Papers EI 2013-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Mika Meitz & Pentti Saikkonen, 2008.
"Stability of nonlinear AR‐GARCH models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
- MEITZ, Mika & SAIKKONEN, Pentti, 2006. "Stability of nonlinear AR-GARCH models," LIDAM Discussion Papers CORE 2006078, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Mika Meitz & Pentti Saikkonen & University of Helsinki, 2007. "Stability of nonlinear AR-GARCH models," Economics Series Working Papers 328, University of Oxford, Department of Economics.
- Meitz, Mika & Saikkonen, Pentti, 2006. "Stability of nonlinear AR-GARCH models," SSE/EFI Working Paper Series in Economics and Finance 632, Stockholm School of Economics.
- Sanders, Dwight R. & Manfredo, Mark R., 2006.
"Forecasting Basis Levels in the Soybean Complex: A Comparison of Time Series Methods,"
Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(3), pages 513-523, December.
- Sanders, Dwight R. & Manfredo, Mark R., 2006. "Forecasting Basis Levels in the Soybean Complex: A Comparison of Time Series Methods," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 38(3), pages 1-11, December.
More about this item
Keywords
COVID-19 forecasting model; Dynamic time series modelling; Forecasting COVID-19 in Norway; New cases and hospital beds; Smooth transition regression; Forecasting policy effects;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:1:p:251-269. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.