Consideration sets, intentions and the inclusion of "don't know" in a two-stage model for voter choice
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Paap, R. & van Nierop, J.E.M. & van Heerde, H.J. & Wedel, M. & Franses, Ph.H.B.F. & Alsem, K.J., 2000. "Consideration sets, intentions and the inclusion of "Don't know" in a two-stage model for voter choice," Econometric Institute Research Papers EI 2000-33/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
References listed on IDEAS
- P. L. H. Yu & K. Lam, 1997. "How to predict election winners from a poll," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 11-24.
- McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
- Peter Lynn & Roger Jowell, 1996. "How Might Opinion Polls be Improved?: The Case for Probability Sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(1), pages 21-28, January.
- Ray C. Fair, 1996. "Econometrics and Presidential Elections," Journal of Economic Perspectives, American Economic Association, vol. 10(3), pages 89-102, Summer.
- John Geweke, 1999.
"Using simulation methods for bayesian econometric models: inference, development,and communication,"
Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
- John Geweke, 1998. "Using simulation methods for Bayesian econometric models: inference, development, and communication," Staff Report 249, Federal Reserve Bank of Minneapolis.
- P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344, April.
- van Nierop, J.E.M. & Paap, R. & Bronnenberg, B. & Franses, Ph.H.B.F., 2000. "Modeling Unobserved Consideration Sets for Household Panel Data," ERIM Report Series Research in Management ERS-2000-42-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Swank, O H & Eisinga, R, 1999. "Economic Outcomes and Voting Behaviour in a Multi-party System: An Application to the Netherlands," Public Choice, Springer, vol. 101(3-4), pages 195-213, December.
- Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
- Schofield, Normal & Martin, Andrew D. & Quinn, Kevin M. & Whitford, Andrew B., 1998. "Multiparty Electoral Competition in the Netherlands and Germany: A Model Based on Multinomial Probit," Public Choice, Springer, vol. 97(3), pages 257-293, December.
- McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
- John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
- Geweke, John, 1996.
"Bayesian reduced rank regression in econometrics,"
Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
- John Geweke, 1995. "Bayesian reduced rank regression in econometrics," Working Papers 540, Federal Reserve Bank of Minneapolis.
- Langche Zeng, 2000. "A Heteroscedastic Generalized Extreme Value Discrete Choice Model," Sociological Methods & Research, , vol. 29(1), pages 118-144, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Richard Paap, 2002. "What are the advantages of MCMC based inference in latent variable models?," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(1), pages 2-22, February.
- Allenby, Greg M., 2017. "Structural forecasts for marketing data," International Journal of Forecasting, Elsevier, vol. 33(2), pages 433-441.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006.
"Econometrics: A Bird’s Eye View,"
CESifo Working Paper Series
1870, CESifo.
- Geweke, John F. & Horowitz, Joel L. & Pesaran, M. Hashem, 2006. "Econometrics: A Bird's Eye View," IZA Discussion Papers 2458, Institute of Labor Economics (IZA).
- Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
- Hoogerheide, L.F. & van Dijk, H.K. & van Oest, R.D., 2007.
"Simulation based bayesian econometric inference: principles and some recent computational advances,"
Econometric Institute Research Papers
EI 2007-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- HOOGERHEIDE, Lennart F. & VAN DIJK, Herman K. & VAN OEST, Rutger D., 2007. "Simulation based Bayesian econometric inference: principles and some recent computational advances," LIDAM Discussion Papers CORE 2007015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Richard Paap & Philip Hans Franses, 2000. "A dynamic multinomial probit model for brand choice with different long-run and short-run effects of marketing-mix variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 717-744.
- Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022.
"The global component of inflation volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
- Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2018. "The global component of inflation volatility," Temi di discussione (Economic working papers) 1170, Bank of Italy, Economic Research and International Relations Area.
- Marcellino, Massimiliano & Carriero, Andrea & Corsello, Francesco, 2019. "The Global Component of Inflation Volatility," CEPR Discussion Papers 13470, C.E.P.R. Discussion Papers.
- Gary Koop & Rodney Strachan & Herman van Dijk & Mattias Villani, 2004.
"Bayesian Approaches to Cointegration,"
Discussion Papers in Economics
04/27, Division of Economics, School of Business, University of Leicester.
- Koop, G. & Strachan, R.W. & van Dijk, H.K. & Villani, M., 2005. "Bayesian approaches to cointegratrion," Econometric Institute Research Papers EI 2005-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- John Geweke & Gautam Gowrisankaran & Robert J. Town, 2003.
"Bayesian Inference for Hospital Quality in a Selection Model,"
Econometrica, Econometric Society, vol. 71(4), pages 1215-1238, July.
- John Geweke & Gautam Gowrisankaran & Robert J. Town, 2001. "Bayesian Inference for Hospital Quality in a Selection Model," NBER Working Papers 8497, National Bureau of Economic Research, Inc.
- John Geweke & Gautam Gowrisankaran & Robert J. Town, 2002. "Bayesian inference for hospital quality in a selection model," Working Paper Series 2002-18, Federal Reserve Bank of San Francisco.
- Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
- Gael Martin, 2001. "Bayesian Analysis Of A Fractional Cointegration Model," Econometric Reviews, Taylor & Francis Journals, vol. 20(2), pages 217-234.
- Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2016.
"Structural analysis with Multivariate Autoregressive Index models,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 332-348.
- Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2015. "Structural Analysis with Multivariate Autoregressive Index Models," CEPR Discussion Papers 10801, C.E.P.R. Discussion Papers.
- Villani, Mattias, 2005. "Bayesian Inference of General Linear Restrictions on the Cointegration Space," Working Paper Series 189, Sveriges Riksbank (Central Bank of Sweden).
- Piatek, Rémi & Gensowski, Miriam, 2017. "A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System," IZA Discussion Papers 11042, Institute of Labor Economics (IZA).
- Fuentes-Albero, Cristina & Melosi, Leonardo, 2013.
"Methods for computing marginal data densities from the Gibbs output,"
Journal of Econometrics, Elsevier, vol. 175(2), pages 132-141.
- Cristina Fuentes-Albero & Leonardo Melosi, 2011. "Methods for Computing Marginal Data Densities from the Gibbs Output," Departmental Working Papers 201131, Rutgers University, Department of Economics.
- Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007.
"On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks,"
Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & VAN DIJK, Herman K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," LIDAM Discussion Papers CORE 2005029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- HOOGERHEIDE, Lennart F. & KAASHOEK, Johan F. & van DIJK, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," LIDAM Reprints CORE 1922, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hoogerheide, L.F. & Kaashoek, J.F. & van Dijk, H.K., 2005. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks," Econometric Institute Research Papers EI 2005-12, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Karlsson, Sune, 2013.
"Forecasting with Bayesian Vector Autoregression,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897,
Elsevier.
- Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
- Veyssiere, Luc Pierre, 2009. "A three essays dissertation on agricultural and environmental microeconomics," ISU General Staff Papers 200901010800001958, Iowa State University, Department of Economics.
- Didier Nibbering, 2019. "A High-dimensional Multinomial Choice Model," Monash Econometrics and Business Statistics Working Papers 19/19, Monash University, Department of Econometrics and Business Statistics.
- van Nierop, J.E.M. & Paap, R. & Bronnenberg, B. & Franses, Ph.H.B.F. & Wedel, M., 2005. "Retrieving unobserved consideration sets from household panel data," Econometric Institute Research Papers EI 2005-49, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Maksym, Obrizan, 2010. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable," MPRA Paper 28577, University Library of Munich, Germany.
- Brownstone, David, 2001. "Discrete Choice Modeling for Transportation," University of California Transportation Center, Working Papers qt29v7d1pk, University of California Transportation Center.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:21:y:2005:i:1:p:53-71. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.