IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v64y2015icp417-428.html
   My bibliography  Save this article

Dependent frequency–severity modeling of insurance claims

Author

Listed:
  • Shi, Peng
  • Feng, Xiaoping
  • Ivantsova, Anastasia

Abstract

Standard ratemaking techniques in non-life insurance assume independence between the number and size of claims. Relaxing the independence assumption, this article explores methods that allow for the correlation among frequency and severity components for micro-level insurance data. To introduce granular dependence, we rely on a hurdle modeling framework where the hurdle component concerns the occurrence of claims and the conditional component looks into the number and size of claims given occurrence. We propose two strategies to correlate the number of claims and the average claim size in the conditional component. The first is based on conditional probability decomposition and treats the number of claims as a covariate in the regression model for the average claim size, the second employed a mixed copula approach to formulate the joint distribution of the number and size of claims. We perform a simulation study to evaluate the performance of the two approaches and then demonstrate their application using a U.S. auto insurance dataset. The hold-out sample validation shows that the proposed model is superior to the industry benchmarks including the Tweedie and the two-part generalized linear models.

Suggested Citation

  • Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
  • Handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:417-428
    DOI: 10.1016/j.insmatheco.2015.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715001183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frees, Edward W. & Meyers, Glenn & Cummings, A. David, 2011. "Summarizing Insurance Scores Using a Gini Index," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1085-1098.
    2. Shi, Peng, 2012. "Multivariate longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 204-215.
    3. Smyth, Gordon K. & Jørgensen, Bent, 2002. "Fitting Tweedie's Compound Poisson Model to Insurance Claims Data: Dispersion Modelling," ASTIN Bulletin, Cambridge University Press, vol. 32(1), pages 143-157, May.
    4. Manning, Willard G. & Basu, Anirban & Mullahy, John, 2005. "Generalized modeling approaches to risk adjustment of skewed outcomes data," Journal of Health Economics, Elsevier, vol. 24(3), pages 465-488, May.
    5. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149.
    6. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    7. Krämer, Nicole & Brechmann, Eike C. & Silvestrini, Daniel & Czado, Claudia, 2013. "Total loss estimation using copula-based regression models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 829-839.
    8. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    9. Peng Shi & Wei Zhang & Emiliano A. Valdez, 2012. "Testing Adverse Selection With Two-Dimensional Information: Evidence From the Singapore Auto Insurance Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(4), pages 1077-1114, December.
    10. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    11. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    12. Sun, Jiafeng & Frees, Edward W. & Rosenberg, Marjorie A., 2008. "Heavy-tailed longitudinal data modeling using copulas," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 817-830, April.
    13. Murray D. Smith, 2003. "Modelling sample selection using Archimedean copulas," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 99-123, June.
    14. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    15. Peter X.-K. Song & Mingyao Li & Ying Yuan, 2009. "Joint Regression Analysis of Correlated Data Using Gaussian Copulas," Biometrics, The International Biometric Society, vol. 65(1), pages 60-68, March.
    16. Edward Frees & Jie Gao & Marjorie Rosenberg, 2011. "Predicting the Frequency and Amount of Health Care Expenditures," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(3), pages 377-392.
    17. Peng Shi & Wei Zhang, 2015. "Private information in healthcare utilization: specification of a copula-based hurdle model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(2), pages 337-361, February.
    18. Liu, Lei & Strawderman, Robert L. & Cowen, Mark E. & Shih, Ya-Chen T., 2010. "A flexible two-part random effects model for correlated medical costs," Journal of Health Economics, Elsevier, vol. 29(1), pages 110-123, January.
    19. Ghosh, Pulak & Albert, Paul S., 2009. "A Bayesian analysis for longitudinal semicontinuous data with an application to an acupuncture clinical trial," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 699-706, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    2. Kaiwen Wang & Jiehui Ding & Kristen R. Lidwell & Scott Manski & Gee Y. Lee & Emilio Xavier Esposito, 2019. "Treatment Level and Store Level Analyses of Healthcare Data," Risks, MDPI, vol. 7(2), pages 1-22, April.
    3. Gao, Guangyuan & Li, Jiahong, 2023. "Dependence modeling of frequency-severity of insurance claims using waiting time," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 29-51.
    4. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    5. Katrien Antonio & Emiliano Valdez, 2012. "Statistical concepts of a priori and a posteriori risk classification in insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 187-224, June.
    6. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    7. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    8. Baumgartner, Carolin & Gruber, Lutz F. & Czado, Claudia, 2015. "Bayesian total loss estimation using shared random effects," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 194-201.
    9. Mihaela Covrig & Iulian Mircea & Gheorghita Zbaganu & Alexandru Coser & Alexandru Tindeche, 2015. "Using R In Generalized Linear Models," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 33-45, September.
    10. Weiping Zhang & MengMeng Zhang & Yu Chen, 2020. "A Copula-Based GLMM Model for Multivariate Longitudinal Data with Mixed-Types of Responses," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-379, November.
    11. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    12. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    13. Peng Shi & Glenn M. Fung & Daniel Dickinson, 2022. "Assessing hail risk for property insurers with a dependent marked point process," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 302-328, January.
    14. Mihaela COVRIG & Dumitru BADEA, 2017. "Some Generalized Linear Models for the Estimation of the Mean Frequency of Claims in Motor Insurance," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 91-107.
    15. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    16. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    17. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    18. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    19. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    20. Silva João M. C. Santos & Tenreyro Silvana & Windmeijer Frank, 2015. "Testing Competing Models for Non-negative Data with Many Zeros," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:417-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.