IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v100y2021icp30-58.html
   My bibliography  Save this article

Infinitely stochastic micro reserving

Author

Listed:
  • Maciak, Matúš
  • Okhrin, Ostap
  • Pešta, Michal

Abstract

Stochastic forecasting and risk valuation are now front burners in a list of applied and theoretical sciences. In this work, we propose an unconventional tool for stochastic prediction of future expenses based on the individual (micro) developments of recorded events. Considering a firm, enterprise, institution, or any entity, which possesses knowledge about particular historical events, there might be a whole series of several related subevents: payments or losses spread over time. This all leads to an infinitely stochastic process at the end. The aim, therefore, lies in predicting future subevent flows coming from already reported, occurred but not reported, and yet not occurred events. The emerging forecasting methodology involves marked time-varying Hawkes process with marks being other time-varying Hawkes processes. The estimated parameters of the model are proved to be consistent and asymptotically normal under simple and easily verifiable assumptions. The empirical properties are investigated through a simulation study. In the practical part of our exploration, we elaborate a specific actuarial application for micro claims reserving.

Suggested Citation

  • Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
  • Handle: RePEc:eee:insuma:v:100:y:2021:i:c:p:30-58
    DOI: 10.1016/j.insmatheco.2021.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668721000780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bessy-Roland, Yannick & Boumezoued, Alexandre & Hillairet, Caroline, 2021. "Multivariate Hawkes process for cyber insurance," Annals of Actuarial Science, Cambridge University Press, vol. 15(1), pages 14-39, March.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Larsen, Christian Roholte, 2007. "An Individual Claims Reserving Model," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 113-132, May.
    4. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," LIDAM Reprints ISBA 2014024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Haastrup, Svend & Arjas, Elja, 1996. "Claims Reserving in Continuous Time; A Nonparametric Bayesian Approach," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 139-164, November.
    6. England, Peter & Verrall, Richard, 1999. "Analytic and bootstrap estimates of prediction errors in claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 281-293, December.
    7. Dassios, Angelos & Zhao, Hongbiao, 2013. "Exact simulation of Hawkes process with exponentially decaying intensity," LSE Research Online Documents on Economics 51370, London School of Economics and Political Science, LSE Library.
    8. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    9. Maximilien Baudry & Christian Y. Robert, 2019. "A machine learning approach for individual claims reserving in insurance," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(5), pages 1127-1155, September.
    10. Massimo De Felice & Franco Moriconi, 2019. "Claim Watching and Individual Claims Reserving Using Classification and Regression Trees," Risks, MDPI, vol. 7(4), pages 1-36, October.
    11. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    12. Weisberg, Herbert I & Tomberlin, Thomas J & Chatterjee, Sangit, 1984. "Predicting Insurance Losses under Cross-Classification: A Comparison of Alternative Approaches," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(2), pages 170-178, April.
    13. Taylor, Greg & McGuire, Gráinne & Sullivan, James, 2008. "Individual Claim Loss Reserving Conditioned by Case Estimates," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 215-256, September.
    14. Bacry, E. & Delattre, S. & Hoffmann, M. & Muzy, J.F., 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2475-2499.
    15. Giesecke, Kay & Schwenkler, Gustavo, 2018. "Filtered likelihood for point processes," Journal of Econometrics, Elsevier, vol. 204(1), pages 33-53.
    16. Hesselager, Ole, 1994. "A Markov Model for Loss Reserving," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 183-193, November.
    17. Jang, Jiwook & Dassios, Angelos, 2013. "A bivariate shot noise self-exciting process for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 524-532.
    18. Matúš Maciak & Michal Pešta & Barbora Peštová, 2020. "Changepoint in dependent and non-stationary panels," Statistical Papers, Springer, vol. 61(4), pages 1385-1407, August.
    19. Šárka Hudecová & Jana Klicnarová & Miroslav Šiman, 2020. "Incomplete interdirections and lift-interdirections," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(1), pages 93-108, January.
    20. Aït-Sahalia, Yacine & Laeven, Roger J.A. & Pelizzon, Loriana, 2014. "Mutual excitation in Eurozone sovereign CDS," Journal of Econometrics, Elsevier, vol. 183(2), pages 151-167.
    21. Badescu, Andrei L. & Chen, Tianle & Lin, X. Sheldon & Tang, Dameng, 2019. "A Marked Cox Model For The Number Of Ibnr Claims: Estimation And Application," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 709-739, September.
    22. Michal Gerthofer & Michal Pešta, 2017. "Stochastic Claims Reserving in Insurance Using Random Effects," Prague Economic Papers, Prague University of Economics and Business, vol. 2017(5), pages 542-560.
    23. Jewell, William S., 1990. "Predicting IBNYR Events and Delays II. Discrete Time," ASTIN Bulletin, Cambridge University Press, vol. 20(1), pages 93-111, April.
    24. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    25. Zhao, Xiao Bing & Zhou, Xian & Wang, Jing Long, 2009. "Semiparametric model for prediction of individual claim loss reserving," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 1-8, August.
    26. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    27. Michal Pešta & Martin Wendler, 2020. "Nuisance-parameter-free changepoint detection in non-stationary series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 379-408, June.
    28. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    29. Jewell, William S., 1989. "Predicting Ibnyr Events and Delays: I. Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 19(1), pages 25-55, April.
    30. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 121-131.
    31. Franz Konecny, 1987. "The asymptotic properties of maximum likelihood estimators for marked poisson processes with a cyclic intensity measure," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 34(1), pages 143-155, December.
    32. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    33. Pešta, Michal & Okhrin, Ostap, 2014. "Conditional least squares and copulae in claims reserving for a single line of business," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 28-37.
    34. Els Godecharle & Katrien Antonio, 2015. "Reserving by Conditioning on Markers of Individual Claims: A Case Study Using Historical Simulation," North American Actuarial Journal, Taylor & Francis Journals, vol. 19(4), pages 273-288, October.
    35. Norberg, Ragnar, 1993. "Prediction of Outstanding Liabilities in Non-Life Insurance1," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 95-115, May.
    36. Lopez, Olivier & Milhaud, Xavier & Thérond, Pierre-E., 2019. "A Tree-Based Algorithm Adapted To Microlevel Reserving And Long Development Claims," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 741-762, September.
    37. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Post-Print hal-01313994, HAL.
    38. Rasmus Waagepetersen & Yongtao Guan, 2009. "Two‐step estimation for inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 685-702, June.
    39. Norberg, Ragnar, 1999. "Prediction of Outstanding Liabilities II. Model Variations and Extensions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 5-25, May.
    40. Arjas, Elja, 1989. "The Claims Reserving Problem in Non-Life Insurance: Some Structural Ideas," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 139-152, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Hrba & Matúš Maciak & Barbora Peštová & Michal Pešta, 2022. "Bootstrapping Not Independent and Not Identically Distributed Data," Mathematics, MDPI, vol. 10(24), pages 1-26, December.
    2. Rodi Lykou & George Tsaklidis, 2021. "Particle Filtering: A Priori Estimation of Observational Errors of a State-Space Model with Linear Observation Equation," Mathematics, MDPI, vol. 9(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    2. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    3. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    4. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    5. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    6. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    7. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    8. Łukasz Delong & Mario V. Wüthrich, 2020. "Neural Networks for the Joint Development of Individual Payments and Claim Incurred," Risks, MDPI, vol. 8(2), pages 1-34, April.
    9. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    10. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    11. Arthur Charpentier & Mathieu Pigeon, 2016. "Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)," Risks, MDPI, vol. 4(2), pages 1-18, May.
    12. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    13. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    14. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    15. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    16. Crevecoeur, Jonas & Robben, Jens & Antonio, Katrien, 2022. "A hierarchical reserving model for reported non-life insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 158-184.
    17. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    18. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    19. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    20. Kristian Buchardt & Christian Furrer & Oliver Lunding Sandqvist, 2022. "Transaction time models in multi-state life insurance," Papers 2209.06902, arXiv.org, revised Feb 2023.

    More about this item

    Keywords

    Stochastic prediction; Marked point process; Hawkes process; Time-varying model; Dynamic panel data; Consistency; Risk valuation; Micro claims reserving;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:100:y:2021:i:c:p:30-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.