IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v49y2019i03p709-739_00.html
   My bibliography  Save this article

A Marked Cox Model For The Number Of Ibnr Claims: Estimation And Application

Author

Listed:
  • Badescu, Andrei L.
  • Chen, Tianle
  • Lin, X. Sheldon
  • Tang, Dameng

Abstract

Incurred but not reported (IBNR) loss reserving is of great importance for Property & Casualty (P&C) insurers. However, the temporal dependence exhibited in the claim arrival process is not reflected in many current loss reserving models, which might affect the accuracy of the IBNR reserve predictions. To overcome this shortcoming, we proposed a marked Cox process and showed its many desirable properties in Badescu et al. (2016). In this paper, we consider the model estimation and applications. We first present an expectation–maximization (EM) algorithm which guarantees the efficiency of the estimators unlike the moment estimation methods widely used in estimating Cox processes. In addition, the proposed fitting algorithm can be implemented at a reasonable computational cost. We examine the performance of the proposed algorithm through simulation studies. The applicability of the proposed model is tested by fitting it to a real insurance claim data set. Through out-of-sample tests, we find that the proposed model can provide realistic predictive distributions.

Suggested Citation

  • Badescu, Andrei L. & Chen, Tianle & Lin, X. Sheldon & Tang, Dameng, 2019. "A Marked Cox Model For The Number Of Ibnr Claims: Estimation And Application," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 709-739, September.
  • Handle: RePEc:cup:astinb:v:49:y:2019:i:03:p:709-739_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036119000151/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    2. Peng Shi & Glenn M. Fung & Daniel Dickinson, 2022. "Assessing hail risk for property insurers with a dependent marked point process," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 302-328, January.
    3. Benjamin Avanzi & Greg Taylor & Bernard Wong & Alan Xian, 2020. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," Papers 2003.13888, arXiv.org, revised May 2020.
    4. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    5. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    6. Kristian Buchardt & Christian Furrer & Oliver Lunding Sandqvist, 2022. "Transaction time models in multi-state life insurance," Papers 2209.06902, arXiv.org, revised Feb 2023.
    7. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Xian, Alan, 2021. "Modelling and understanding count processes through a Markov-modulated non-homogeneous Poisson process framework," European Journal of Operational Research, Elsevier, vol. 290(1), pages 177-195.
    8. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:49:y:2019:i:03:p:709-739_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.