IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v19y1989i01p25-55_00.html
   My bibliography  Save this article

Predicting Ibnyr Events and Delays: I. Continuous Time

Author

Listed:
  • Jewell, William S.

Abstract

An IBNYR event is one that occurs randomly during some fixed exposure interval and incurs a random delay before it is reported. Both the rate at which such events occur and the parameters of the delay distribution are unknown random quantities. Given the number of events that have been reported during some observation interval, plus various secondary data on the dates of the events, the problem is to estimate the true values of the unknown parameters and to predict the number of events that are still unreported. A full-distributional Bayesian model is used, and it is shown that the amount of secondary data is critical. A recursive procedure calculates the predictive density; however, an explicit formula for the predictive mode can be obtained. The main computational work is the evaluation of an integral involving the prior density of the delay parameters, but this can be simplified in the exponential case using Gammoid approximations.

Suggested Citation

  • Jewell, William S., 1989. "Predicting Ibnyr Events and Delays: I. Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 19(1), pages 25-55, April.
  • Handle: RePEc:cup:astinb:v:19:y:1989:i:01:p:25-55_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100008345/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Shi, 2017. "A Multivariate Analysis of Intercompany Loss Triangles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(2), pages 717-737, June.
    2. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    3. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    4. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    5. Arthur Charpentier & Mathieu Pigeon, 2016. "Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)," Risks, MDPI, vol. 4(2), pages 1-18, May.
    6. Zhao, Xiao Bing & Zhou, Xian & Wang, Jing Long, 2009. "Semiparametric model for prediction of individual claim loss reserving," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 1-8, August.
    7. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    8. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    9. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    10. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    11. Ahn, Soohan & Badescu, Andrei L. & Cheung, Eric C.K. & Kim, Jeong-Rae, 2018. "An IBNR–RBNS insurance risk model with marked Poisson arrivals," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 26-42.
    12. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    13. Huang, Jinlong & Qiu, Chunjuan & Wu, Xianyi & Zhou, Xian, 2015. "An individual loss reserving model with independent reporting and settlement," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 232-245.
    14. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    15. Muneya Matsui, 2017. "Prediction of Components in Random Sums," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 573-587, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:19:y:1989:i:01:p:25-55_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.