IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01280033.html
   My bibliography  Save this paper

Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)

Author

Listed:
  • Arthur Charpentier

    (UQAM - Université du Québec à Montréal = University of Québec in Montréal, CREM - Centre de recherche en économie et management - UNICAEN - Université de Caen Normandie - NU - Normandie Université - UR - Université de Rennes - CNRS - Centre National de la Recherche Scientifique)

  • Mathieu Pigeon

    (UQAM - Université du Québec à Montréal = University of Québec in Montréal)

Abstract

Traditionally, actuaries have used run-off triangles to estimate reserve ("macro" models, on agregated data). But it is possible to model payments related to individual claims. If those models provide similar estimations, we investigate uncertainty related to reserves, with "macro" and "micro" models. We study theoretical properties of econometric models (Gaussian, Poisson and quasi-Poisson) on individual data, and clustered data. Finally, application on claims reserving are considered.

Suggested Citation

  • Arthur Charpentier & Mathieu Pigeon, 2016. "Macro vs. Micro Methods in Non-Life Claims Reserving (an Econometric Perspective)," Working Papers hal-01280033, HAL.
  • Handle: RePEc:hal:wpaper:hal-01280033
    Note: View the original document on HAL open archive server: https://hal.science/hal-01280033
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01280033/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mack, Thomas, 1993. "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 213-225, November.
    2. Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
    3. Guido W. Imbens & Tony Lancaster, 1994. "Combining Micro and Macro Data in Microeconometric Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 655-680.
    4. van den Berg, Gerard J. & van der Klaauw, Bas, 2001. "Combining micro and macro unemployment duration data," Journal of Econometrics, Elsevier, vol. 102(2), pages 271-309, June.
    5. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 121-131.
    6. Norberg, Ragnar, 1999. "Prediction of Outstanding Liabilities II. Model Variations and Extensions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 5-25, May.
    7. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," LIDAM Reprints ISBA 2014024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Mack, Thomas & Venter, Gary, 2000. "A comparison of stochastic models that reproduce chain ladder reserve estimates," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 101-107, February.
    9. Mojon, Benoît & Altissimo, Filippo & Zaffaroni, Paolo, 2007. "Fast micro and slow macro: can aggregation explain the persistence of inflation?," Working Paper Series 729, European Central Bank.
    10. Hesselager, Ole, 1994. "A Markov Model for Loss Reserving," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 183-193, November.
    11. Zhao, Xiao Bing & Zhou, Xian & Wang, Jing Long, 2009. "Semiparametric model for prediction of individual claim loss reserving," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 1-8, August.
    12. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    13. Jewell, William S., 1989. "Predicting Ibnyr Events and Delays: I. Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 19(1), pages 25-55, April.
    14. Norberg, Ragnar, 1993. "Prediction of Outstanding Liabilities in Non-Life Insurance1," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 95-115, May.
    15. Arjas, Elja, 1989. "The Claims Reserving Problem in Non-Life Insurance: Some Structural Ideas," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 139-152, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    2. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    3. Lindholm, Mathias & Verrall, Richard, 2020. "Regression based reserving models and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 109-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    2. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    3. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    4. Fersini, Paola & Melisi, Giuseppe, 2016. "Stochastic model to evaluate the fair value of motor third-party liability under the direct reimbursement scheme and quantification of the capital requirement in a Solvency II perspective," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 27-44.
    5. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    6. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    7. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    8. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    9. Lopez, Olivier, 2019. "A censored copula model for micro-level claim reserving," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 1-14.
    10. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    11. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    12. Huang, Jinlong & Wu, Xianyi & Zhou, Xian, 2016. "Asymptotic behaviors of stochastic reserving: Aggregate versus individual models," European Journal of Operational Research, Elsevier, vol. 249(2), pages 657-666.
    13. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    14. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    15. Huang, Jinlong & Qiu, Chunjuan & Wu, Xianyi & Zhou, Xian, 2015. "An individual loss reserving model with independent reporting and settlement," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 232-245.
    16. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    17. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    18. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    19. Benjamin Avanzi & Gregory Clive Taylor & Melantha Wang & Bernard Wong, 2020. "SynthETIC: an individual insurance claim simulator with feature control," Papers 2008.05693, arXiv.org, revised Aug 2021.
    20. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.

    More about this item

    Keywords

    Loss reserving; Clustering; Generalized Linear Mixed Models;
    All these keywords.

    JEL classification:

    • C - Mathematical and Quantitative Methods
    • G0 - Financial Economics - - General
    • G1 - Financial Economics - - General Financial Markets
    • G2 - Financial Economics - - Financial Institutions and Services
    • G3 - Financial Economics - - Corporate Finance and Governance
    • M2 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics
    • M4 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting
    • K2 - Law and Economics - - Regulation and Business Law

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01280033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.