IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.05274.html

On the use of case estimate and transactional payment data in neural networks for individual loss reserving

Author

Listed:
  • Benjamin Avanzi
  • Matthew Lambrianidis
  • Greg Taylor
  • Bernard Wong

Abstract

The use of neural networks trained on individual claims data has become increasingly popular in the actuarial reserving literature. We consider how to best input historical payment data in neural network models. Additionally, case estimates are also available in the format of a time series, and we extend our analysis to assessing their predictive power. In this paper, we compare a feed-forward neural network trained on summarised transactions to a recurrent neural network equipped to analyse a claim's entire payment history and/or case estimate development history. We draw conclusions from training and comparing the performance of the models on multiple, comparable highly complex datasets simulated from SPLICE (Avanzi, Taylor and Wang, 2023). We find evidence that case estimates will improve predictions significantly, but that equipping the neural network with memory only leads to meagre improvements. Although the case estimation process and quality will vary significantly between insurers, we provide a standardised methodology for assessing their value.

Suggested Citation

  • Benjamin Avanzi & Matthew Lambrianidis & Greg Taylor & Bernard Wong, 2025. "On the use of case estimate and transactional payment data in neural networks for individual loss reserving," Papers 2601.05274, arXiv.org.
  • Handle: RePEc:arx:papers:2601.05274
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.05274
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.05274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.