IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v148y2024icp244-263.html
   My bibliography  Save this article

Finding all stable matchings with assignment constraints

Author

Listed:
  • Gutin, Gregory Z.
  • Neary, Philip R.
  • Yeo, Anders

Abstract

In this paper we consider stable matchings subject to assignment constraints. These are matchings that require certain assigned pairs to be included, insist that some other assigned pairs are not, and, importantly, are stable. Our main contribution is an algorithm, based on the iterated deletion of unattractive alternatives (Balinski and Ratier, 1997; Gutin et al., 2023), that determines if and when a given list of constraints is compatible with stability. Whenever there is a stable matching that satisfies the constraints, our algorithm outputs all of them (each in polynomial time per solution). This provides market designers with (i) a tool to test the feasibility of stable matchings subject to assignment constraints, and (ii) a tool to implement them when feasible.

Suggested Citation

  • Gutin, Gregory Z. & Neary, Philip R. & Yeo, Anders, 2024. "Finding all stable matchings with assignment constraints," Games and Economic Behavior, Elsevier, vol. 148(C), pages 244-263.
  • Handle: RePEc:eee:gamebe:v:148:y:2024:i:c:p:244-263
    DOI: 10.1016/j.geb.2024.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825624001350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2024.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Federico Echenique & Leeat Yariv, 2013. "An Experimental Study of Decentralized Matching," Working Papers 2013-3, Princeton University. Economics Department..
    2. Bonifacio, Agustín G. & Juarez, Noelia & Neme, Pablo & Oviedo, Jorge, 2022. "Cycles to compute the full set of many-to-many stable matchings," Mathematical Social Sciences, Elsevier, vol. 117(C), pages 20-29.
    3. Klaus, Bettina & Klijn, Flip, 2005. "Stable matchings and preferences of couples," Journal of Economic Theory, Elsevier, vol. 121(1), pages 75-106, March.
    4. Bettina Klaus & Flip Klijn, 2005. "Corrigendum: Stable Matchings and Preferences of Couples," UFAE and IAE Working Papers 653.05, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    5. Ehlers, Lars & Hafalir, Isa E. & Yenmez, M. Bumin & Yildirim, Muhammed A., 2014. "School choice with controlled choice constraints: Hard bounds versus soft bounds," Journal of Economic Theory, Elsevier, vol. 153(C), pages 648-683.
    6. Roth, Alvin E, 1986. "On the Allocation of Residents to Rural Hospitals: A General Property of Two-Sided Matching Markets," Econometrica, Econometric Society, vol. 54(2), pages 425-427, March.
    7. Alvin Roth, 2008. "Deferred acceptance algorithms: history, theory, practice, and open questions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 537-569, March.
    8. Bettina Klaus & Flip Klijn, 2006. "Median Stable Matching for College Admissions," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 1-11, April.
    9. Martinez, Ruth & Masso, Jordi & Neme, Alejandro & Oviedo, Jorge, 2004. "An algorithm to compute the full set of many-to-many stable matchings," Mathematical Social Sciences, Elsevier, vol. 47(2), pages 187-210, March.
    10. Roth, Alvin E, 1984. "The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 991-1016, December.
    11. Jay Sethuraman & Chung-Piaw Teo & Liwen Qian, 2006. "Many-to-One Stable Matching: Geometry and Fairness," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 581-596, August.
    12. Gregory Z. Gutin & Philip R. Neary & Anders Yeo, 2021. "Unique Stable Matchings," Papers 2106.12977, arXiv.org, revised Jul 2023.
    13. Gutin, Gregory Z. & Neary, Philip R. & Yeo, Anders, 2023. "Unique stable matchings," Games and Economic Behavior, Elsevier, vol. 141(C), pages 529-547.
    14. Peter Chen & Michael Egesdal & Marek Pycia & M. Bumin Yenmez, 2021. "Quantile Stable Mechanisms," Games, MDPI, vol. 12(2), pages 1-9, May.
    15. Chen, Peter & Egesdal, Michael & Pycia, Marek & Yenmez, M. Bumin, 2016. "Median stable matchings in two-sided markets," Games and Economic Behavior, Elsevier, vol. 97(C), pages 64-69.
    16. Yuichiro Kamada & Fuhito Kojima, 2015. "Efficient Matching under Distributional Constraints: Theory and Applications," American Economic Review, American Economic Association, vol. 105(1), pages 67-99, January.
    17. Chung-Piaw Teo & Jay Sethuraman, 1998. "The Geometry of Fractional Stable Matchings and Its Applications," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 874-891, November.
    18. Kirill Rudov, 2024. "Fragile Stable Matchings," Papers 2403.12183, arXiv.org.
    19. Roth, Alvin E & Vande Vate, John H, 1990. "Random Paths to Stability in Two-Sided Matching," Econometrica, Econometric Society, vol. 58(6), pages 1475-1480, November.
    20. Piotr Dworczak, 2021. "Deferred Acceptance with Compensation Chains," Operations Research, INFORMS, vol. 69(2), pages 456-468, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gregory Z. Gutin & Daniel Karapetyan & Philip R. Neary & Alexander Vickery & Anders Yeo, 2024. "Speeding up deferred acceptance," Papers 2409.06865, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Gutin & Philip R. Neary & Anders Yeo, 2022. "Finding all stable matchings with assignment constraints," Papers 2204.03989, arXiv.org, revised Jun 2024.
    2. Jay Sethuraman & Chung-Piaw Teo & Liwen Qian, 2006. "Many-to-One Stable Matching: Geometry and Fairness," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 581-596, August.
    3. Hai Nguyen & Thành Nguyen & Alexander Teytelboym, 2021. "Stability in Matching Markets with Complex Constraints," Management Science, INFORMS, vol. 67(12), pages 7438-7454, December.
    4. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    5. Alvin Roth, 2008. "Deferred acceptance algorithms: history, theory, practice, and open questions," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(3), pages 537-569, March.
    6. Chao Huang, 2022. "Firm-worker hypergraphs," Papers 2211.06887, arXiv.org, revised Nov 2023.
    7. Péter Biró & Flip Klijn, 2013. "Matching With Couples: A Multidisciplinary Survey," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-18.
    8. Bettina Klaus & David F. Manlove & Francesca Rossi, 2014. "Matching under Preferences," Cahiers de Recherches Economiques du Département d'économie 14.07, Université de Lausanne, Faculté des HEC, Département d’économie.
    9. Bettina Klaus & Flip Klijn, 2010. "Smith and Rawls share a room: stability and medians," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 35(4), pages 647-667, October.
    10. Peter Chen & Michael Egesdal & Marek Pycia & M. Bumin Yenmez, 2021. "Quantile Stable Mechanisms," Games, MDPI, vol. 12(2), pages 1-9, May.
    11. Peter Biro & Tamas Fleiner & Rob Irving, 2013. "Matching Couples with Scarf's Algorithm," CERS-IE WORKING PAPERS 1330, Institute of Economics, Centre for Economic and Regional Studies.
    12. Chen, Peter & Egesdal, Michael & Pycia, Marek & Yenmez, M. Bumin, 2016. "Median stable matchings in two-sided markets," Games and Economic Behavior, Elsevier, vol. 97(C), pages 64-69.
    13. James Boudreau & Vicki Knoblauch, 2013. "Preferences and the price of stability in matching markets," Theory and Decision, Springer, vol. 74(4), pages 565-589, April.
    14. Hatfield, John William & Kojima, Fuhito, 2010. "Substitutes and stability for matching with contracts," Journal of Economic Theory, Elsevier, vol. 145(5), pages 1704-1723, September.
    15. Goto, Masahiro & Iwasaki, Atsushi & Kawasaki, Yujiro & Yasuda, Yosuke & Yokoo, Makoto, 2014. "Improving Fairness and Efficiency in Matching with Distributional Constraints: An Alternative Solution for the Japanese Medical Residency Match," MPRA Paper 53409, University Library of Munich, Germany.
    16. Martin Van der Linden, 2019. "Deferred acceptance is minimally manipulable," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 609-645, June.
    17. Hatfield, John William & Kominers, Scott Duke, 2017. "Contract design and stability in many-to-many matching," Games and Economic Behavior, Elsevier, vol. 101(C), pages 78-97.
    18. Ata Atay & Sylvain Funck & Ana Mauleon & Vincent Vannetelbosch, 2023. "Matching markets with farsighted couples," UB School of Economics Working Papers 2023/445, University of Barcelona School of Economics.
    19. Alfredo Salgado-Torres, 2012. "A simple decentralized matching mechanism in markets with couples," Economics Bulletin, AccessEcon, vol. 32(3), pages 2044-2055.
    20. Ata Atay & Sylvain Funck & Ana Mauleon & Vincent Vannetelbosch, 2025. "Matching markets with farsighted couples," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 64(3), pages 465-481, May.

    More about this item

    Keywords

    Stable matchings; Assignment constraints; Iterated deletion of unattractive alternatives; Normal form;
    All these keywords.

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:148:y:2024:i:c:p:244-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.