IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v10y2008i7-8p460-466.html
   My bibliography  Save this article

Empirical specification of cost reductions associated with accumulated knowledge in the Swedish kraft paper industry

Author

Listed:
  • Lundmark, Robert

Abstract

This paper presents an alternative approach in estimating the effect that technological knowledge has on the cost structure facing individual firms. The suggested method is applied to the Swedish kraft paper industry and relies on a comprehensive dataset for eight individual integrated kraft paper mills. The developed model is based on a two-step process. Step one, the estimation of a pure cost reduction index is derived using a flexible variable cost function which is utilising mill-specific dummy variables. In addition, this approach allows for an estimation of the pure unit cost reduction index that is devoid of scale and price effects which, if not dealt with can produce spurious results when estimating learning effects. Step two, is the estimation of a two factor dynamic learning curve model (2FDLC) using the estimated pure unit cost reduction index as dependent variable. The results suggest that the Swedish kraft paper industry has relatively little to gain in terms of cost reduction through a further technological learning. However, the method performed well, producing intuitive and statistically significant estimates indicating its usefulness in further analyses.

Suggested Citation

  • Lundmark, Robert, 2008. "Empirical specification of cost reductions associated with accumulated knowledge in the Swedish kraft paper industry," Forest Policy and Economics, Elsevier, vol. 10(7-8), pages 460-466, October.
  • Handle: RePEc:eee:forpol:v:10:y:2008:i:7-8:p:460-466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389-9341(08)00011-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    2. Bousquet, Alain & Ivaldi, Marc, 1998. "An individual choice model of energy mix," Resource and Energy Economics, Elsevier, vol. 20(3), pages 263-286, September.
    3. Lundmark, Robert & Söderholm, Patrik & Lundmark, Robert, 2003. "Structural changes in Swedish wastepaper demand: a variable cost function approach," Journal of Forest Economics, Elsevier, vol. 9(1), pages 41-63.
    4. Ferdinand K. Levy, 1965. "Adaptation in the Production Process," Management Science, INFORMS, vol. 11(6), pages 136-154, April.
    5. Lee, Lung-Fei & Pitt, Mark M, 1986. "Microeconometric Demand Systems with Binding Nonnegativity Constraints: The Dual Approach," Econometrica, Econometric Society, vol. 54(5), pages 1237-1242, September.
    6. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    7. Dohnal, M. & Starzak, M. & Kerkovsky, M. & Dohnalova, J. & Vystrcil, J. & Koivisto, R. & Pokorny, M. & Vanis, M. & Parsons, S., 1993. "A fuzzy upgrading of integrated vague managerial and engineering knowledge," International Journal of Production Economics, Elsevier, vol. 32(2), pages 209-228, September.
    8. Lee, Lung-Fei & Pitt, Mark M., 1987. "Microeconometric models of rationing, imperfect markets, and non-negativity constraints," Journal of Econometrics, Elsevier, vol. 36(1-2), pages 89-110.
    9. Sangho Chung, 2001. "The learning curve and the yield factor: the case of Korea's semiconductor industry," Applied Economics, Taylor & Francis Journals, vol. 33(4), pages 473-483.
    10. Isoard, Stephane & Soria, Antonio, 2001. "Technical change dynamics: evidence from the emerging renewable energy technologies," Energy Economics, Elsevier, vol. 23(6), pages 619-636, November.
    11. Lundmark, Robert, 2005. "A comparison of approaches towards measuring technical change: the case of Swedish newsprint production," Forest Policy and Economics, Elsevier, vol. 7(4), pages 563-577, May.
    12. Lundmark, Robert & Soderholm, Patrik, 2004. "Estimating and decomposing the rate of technical change in the Swedish pulp and paper industry: A general index approach," International Journal of Production Economics, Elsevier, vol. 91(1), pages 17-35, September.
    13. Baltagi, Badi H & Griffin, James M, 1988. "A General Index of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 20-41, February.
    14. Kim, Bowon, 1998. "Optimal development of production technology when autonomous and induced learning are present," International Journal of Production Economics, Elsevier, vol. 55(1), pages 39-52, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Figueiredo, Paulo N., 2016. "Evolution of the short-fiber technological trajectory in Brazil's pulp and paper industry: The role of firm-level innovative capability-building and indigenous institutions," Forest Policy and Economics, Elsevier, vol. 64(C), pages 1-14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lundmark, Robert, 2005. "A comparison of approaches towards measuring technical change: the case of Swedish newsprint production," Forest Policy and Economics, Elsevier, vol. 7(4), pages 563-577, May.
    2. Lundmark, Robert & Söderholm, Patrik & Lundmark, Robert, 2003. "Structural changes in Swedish wastepaper demand: a variable cost function approach," Journal of Forest Economics, Elsevier, vol. 9(1), pages 41-63.
    3. Lundmark, Robert & Soderholm, Patrik, 2004. "Estimating and decomposing the rate of technical change in the Swedish pulp and paper industry: A general index approach," International Journal of Production Economics, Elsevier, vol. 91(1), pages 17-35, September.
    4. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
    5. Lundmark, Robert & Nolander, Carl & Olofsson, Elias, 2021. "Spatial production structure and input choices of forest products in Sweden," Forest Policy and Economics, Elsevier, vol. 128(C).
    6. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    7. Raja Chakir & Alain Bousquet & Norbert Ladoux, 2004. "Modeling corner solutions with panel data: Application to the industrial energy demand in France," Empirical Economics, Springer, vol. 29(1), pages 193-208, January.
    8. Raja Chakir & Alban Thomas, 2003. "Simulated maximum likelihood estimation of demand systems with corner solutions and panel data application to industrial energy demand," Revue d'économie politique, Dalloz, vol. 113(6), pages 773-799.
    9. Lundmark, Robert & Olsson, Anna, 2015. "Factor substitution and procurement competition for forest resources in Sweden," International Journal of Production Economics, Elsevier, vol. 169(C), pages 99-109.
    10. Bousquet, Alain & Ladoux, Norbert, 2006. "Flexible versus designated technologies and interfuel substitution," Energy Economics, Elsevier, vol. 28(4), pages 426-443, July.
    11. Wilson, E.J. & Chaudhri, D.P., 2000. "Endogeneity, Knowledge and Dynamics of Long Run Capitalist Economic Growth," Economics Working Papers wp00-03, School of Economics, University of Wollongong, NSW, Australia.
    12. Arnaud de La Tour & Matthieu Glachant & Yann Ménière, 2013. "What cost for photovoltaic modules in 2020? Lessons from experience curve models," Working Papers hal-00805668, HAL.
    13. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    14. Millimet, Daniel L. & Tchernis, Rusty, 2008. "Estimating high-dimensional demand systems in the presence of many binding non-negativity constraints," Journal of Econometrics, Elsevier, vol. 147(2), pages 384-395, December.
    15. Greaker, Mads & Lund Sagen, Eirik, 2008. "Explaining experience curves for new energy technologies: A case study of liquefied natural gas," Energy Economics, Elsevier, vol. 30(6), pages 2899-2911, November.
    16. Wang, Lan-Hsun & Liao, Shu-Yi & Huang, Mao-Lung, 2022. "The growth effects of knowledge-based technological change on Taiwan’s industry: A comparison of R&D and education level," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 525-545.
    17. Bottomley, Paul & Ozanne, Adam & Thirtle, Colin, 1988. "A Total Factor Productivity Index for U.K. Agriculture 1967-87," Manchester Working Papers in Agricultural Economics 232799, University of Manchester, School of Economics, Agricultural Economics Department.
    18. Almas Heshmati, 2003. "Productivity Growth, Efficiency and Outsourcing in Manufacturing and Service Industries," Journal of Economic Surveys, Wiley Blackwell, vol. 17(1), pages 79-112, February.
    19. Vlachou, Andriana & Vassos, Spyros & Andrikopoulos, Andreas, 1996. "Energy and environment: Reducing CO2 emissions from the electric power industry," Journal of Policy Modeling, Elsevier, vol. 18(4), pages 343-376, August.
    20. KITAMURA Toshihiko & MANAGI Shunsuke, 2016. "Substitution between Purchased Electricity and Fuel for Onsite Power Generation in the Manufacturing Industry: Plant level analysis in Japan," Discussion papers 16007, Research Institute of Economy, Trade and Industry (RIETI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:10:y:2008:i:7-8:p:460-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.