IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v39y2021ics1544612319311055.html
   My bibliography  Save this article

Measuring the risk of Chinese Fintech industry: evidence from the stock index

Author

Listed:
  • Yao, Yinhong
  • Li, Jianping
  • Sun, Xiaolei

Abstract

This study measures the risk of the emerging Fintech industry in China and identifies its influencing risk factors by calculating the tail risk of Fintech stock index. The expectile regression model that includes the lagged returns and macroeconomic risk factors is used to calculate the Expectile Value-at-Risk (EVaR). Based on the 1230 daily returns of Fintech index ranges from July 2, 2014, to September 10, 2019, the empirical results indicate that the Fintech industry possesses a higher risk, and is affected by both the past development and internal macroeconomic condition.

Suggested Citation

  • Yao, Yinhong & Li, Jianping & Sun, Xiaolei, 2021. "Measuring the risk of Chinese Fintech industry: evidence from the stock index," Finance Research Letters, Elsevier, vol. 39(C).
  • Handle: RePEc:eee:finlet:v:39:y:2021:i:c:s1544612319311055
    DOI: 10.1016/j.frl.2020.101564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612319311055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    2. Guo, Yanhong & Zhou, Wenjun & Luo, Chunyu & Liu, Chuanren & Xiong, Hui, 2016. "Instance-based credit risk assessment for investment decisions in P2P lending," European Journal of Operational Research, Elsevier, vol. 249(2), pages 417-426.
    3. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    4. Li, Jingyu & Yao, Yanzhen & Li, Jianping & Zhu, Xiaoqian, 2019. "Network-based estimation of systematic and idiosyncratic contagion: The case of Chinese financial institutions," Emerging Markets Review, Elsevier, vol. 40(C), pages 1-1.
    5. Caporale, Tony, 2012. "Time varying CAPM betas and banking sector risk," Economics Letters, Elsevier, vol. 115(2), pages 293-295.
    6. Illing, Mark & Liu, Ying, 2006. "Measuring financial stress in a developed country: An application to Canada," Journal of Financial Stability, Elsevier, vol. 2(3), pages 243-265, October.
    7. Artie W. Ng & Benny K.B. Kwok, 2017. "Emergence of Fintech and cybersecurity in a global financial centre," Journal of Financial Regulation and Compliance, Emerald Group Publishing Limited, vol. 25(4), pages 422-434, November.
    8. Chen, Rongda & Yu, Jingjing & Jin, Chenglu & Bao, Weiwei, 2019. "Internet finance investor sentiment and return comovement," Pacific-Basin Finance Journal, Elsevier, vol. 56(C), pages 151-161.
    9. Sun, Xiaolei & Yao, Xiaoyang & Wang, Jun, 2017. "Dynamic interaction between economic policy uncertainty and financial stress: A multi-scale correlation framework," Finance Research Letters, Elsevier, vol. 21(C), pages 214-221.
    10. Yao, Qiwei & Tong, Howell, 1996. "Asymmetric least squares regression estimation: a nonparametric approach," LSE Research Online Documents on Economics 19423, London School of Economics and Political Science, LSE Library.
    11. Canh, Nguyen Phuc & Wongchoti, Udomsak & Thanh, Su Dinh & Thong, Nguyen Trung, 2019. "Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model," Finance Research Letters, Elsevier, vol. 29(C), pages 90-100.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Lee, In & Shin, Yong Jae, 2018. "Fintech: Ecosystem, business models, investment decisions, and challenges," Business Horizons, Elsevier, vol. 61(1), pages 35-46.
    14. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    15. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    16. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
    17. Shangyu Xie & Yong Zhou & Alan T. K. Wan, 2014. "A Varying-Coefficient Expectile Model for Estimating Value at Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 576-592, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. HOROBEȚ Alexandra & MNOHOGHITNEI Irina & BELAȘCU Lucian & CROITORU Ionuț Marius, 2023. "Esg Reporting And Capital Market Investors: Insights From The Global Technology And Fintech Industries," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 18(2), pages 178-195, August.
    2. Xin Li & Xiujuan Tian, 2022. "Research on SMEs’ Reputation Mechanism and Default Risk Based on Investors’ Financial Participation," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    3. Yinhong Yao & Jianping Li, 2022. "Operational risk assessment of third-party payment platforms: a case study of China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
    4. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
    2. Yundong Tu & Siwei Wang, 2023. "Variable Screening and Model Averaging for Expectile Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 574-598, June.
    3. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    4. Härdle, Wolfgang Karl & Ling, Chengxiu, 2018. "How Sensitive are Tail-related Risk Measures in a Contamination Neighbourhood?," IRTG 1792 Discussion Papers 2018-010, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2022. "Spillover effects between commodity and stock markets: A SDSES approach," Resources Policy, Elsevier, vol. 79(C).
    6. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    7. Taylor, James W., 2021. "Evaluating quantile-bounded and expectile-bounded interval forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 800-811.
    8. Antonio Rubia Serrano & Lidia Sanchis-Marco, 2015. "Measuring Tail-Risk Cross-Country Exposures in the Banking Industry," Working Papers. Serie AD 2015-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    9. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    10. Xiu Xu & Andrija Mihoci & Wolfgang Karl Hardle, 2020. "lCARE -- localizing Conditional AutoRegressive Expectiles," Papers 2009.13215, arXiv.org.
    11. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    12. Laura Garcia-Jorcano & Lidia Sanchis-Marco, 2023. "Measuring Systemic Risk Using Multivariate Quantile-Located ES Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 1-72.
    13. Zongwu Cai & Ying Fang & Dingshi Tian, 2018. "Assessing Tail Risk Using Expectile Regressions with Partially Varying Coefficients," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201804, University of Kansas, Department of Economics, revised Oct 2018.
    14. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    15. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    16. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    17. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter FRM based on Expectiles," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Zhang, Feipeng & Li, Qunhua, 2017. "A continuous threshold expectile model," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 49-66.
    19. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    20. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2021. "Systemic-systematic risk in financial system: A dynamic ranking based on expectiles," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 330-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:39:y:2021:i:c:s1544612319311055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.