IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v30y2025i1p44-70.html
   My bibliography  Save this article

Behavioural explanations of Expectile VaR forecasting and dynamic hedging strategies for downside risk during the COVID‐19 pandemic: Insights from financial markets

Author

Listed:
  • Yousra Trichilli
  • Sahbi Gaadane
  • Mouna Boujelbène Abbes
  • Afif Masmoudi

Abstract

In this paper, we investigate the influence of confirmation bias on Expectile Value at Risk (EVaR) forecasting among fundamentalist, optimistic, and pessimistic investors in cryptocurrency, commodity, and stock markets before and during the COVID‐19 pandemic. Utilizing the DCC‐range GARCH model, we also explore the conditional minimum downside risk hedge ratios. Our findings demonstrate that confirmation bias leads to excessive EVaR for financial market returns, regardless of the period being before or during COVID‐19. Moreover, fundamentalists' expectations in all markets remain constant, while without confirmation bias, optimists' and pessimists' expectations tend to converge to zero over time but diverge significantly during turbulent periods. When confirmation bias is present, the average distance between these expectations widens. Analysing the hedge ratio results, with or without confirmation bias, also unveils the conditional minimum downside risk hedge ratios. These ratios indicate the optimal proportions for hedging downside risk in each financial market during different periods. We find that the conditional minimum downside risk hedge ratios are generally lower (higher) during the pre‐COVID‐19 (COVID‐19) period, implying that hedging costs are higher during the COVID‐19 period. These insightful findings offer valuable insights for traders and regulators in identifying and understanding the risk conditions of cryptocurrency, commodity, and stock markets. Additionally, the analysis of conditional minimum downside risk hedge ratios provides investors with essential information on how to strategically position their portfolios to mitigate and manage risk during both tranquil and turbulent market conditions, with and without confirmation bias.

Suggested Citation

  • Yousra Trichilli & Sahbi Gaadane & Mouna Boujelbène Abbes & Afif Masmoudi, 2025. "Behavioural explanations of Expectile VaR forecasting and dynamic hedging strategies for downside risk during the COVID‐19 pandemic: Insights from financial markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 44-70, January.
  • Handle: RePEc:wly:ijfiec:v:30:y:2025:i:1:p:44-70
    DOI: 10.1002/ijfe.2902
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2902
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    2. Thomas Conlon & John Cotter, 2012. "An empirical analysis of dynamic multiscale hedging using wavelet decomposition," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(3), pages 272-299, March.
    3. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    4. Selmi, Refk & Mensi, Walid & Hammoudeh, Shawkat & Bouoiyour, Jamal, 2018. "Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold," Energy Economics, Elsevier, vol. 74(C), pages 787-801.
    5. Diego García & Francesco Sangiorgi & Branko Urošević, 2007. "Overconfidence and Market Efficiency with Heterogeneous Agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 30(2), pages 313-336, February.
    6. Stefano Palminteri & Germain Lefebvre & Emma J Kilford & Sarah-Jayne Blakemore, 2017. "Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-22, August.
    7. Aigner, D J & Amemiya, Takeshi & Poirier, Dale J, 1976. "On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 377-396, June.
    8. Pouget, Sébastien & Villeneuve, Stéphane, 2012. "A Mind is a Terrible Thing to Change: Confirmation Bias in Financial Markets," TSE Working Papers 12-306, Toulouse School of Economics (TSE), revised Aug 2016.
    9. Shangyu Xie & Yong Zhou & Alan T. K. Wan, 2014. "A Varying-Coefficient Expectile Model for Estimating Value at Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 576-592, October.
    10. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Oduyemi, Gabriel O., 2021. "How COVID-19 upturns the hedging potentials of gold against oil and stock markets risks: Nonlinear evidences through threshold regression and markov-regime switching models," Resources Policy, Elsevier, vol. 70(C).
    11. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
    12. Dirk G. Baur & Thomas Dimpfl, 2021. "The volatility of Bitcoin and its role as a medium of exchange and a store of value," Empirical Economics, Springer, vol. 61(5), pages 2663-2683, November.
    13. Ahmad, Wasim & Hernandez, Jose Arreola & Saini, Seema & Mishra, Ritesh Kumar, 2021. "The US equity sectors, implied volatilities, and COVID-19: What does the spillover analysis reveal?," Resources Policy, Elsevier, vol. 72(C).
    14. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    15. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    16. JaeHong Park & Prabhudev Konana & Bin Gu & Alok Kumar & Rajagopal Raghunathan, 2013. "Information Valuation and Confirmation Bias in Virtual Communities: Evidence from Stock Message Boards," Information Systems Research, INFORMS, vol. 24(4), pages 1050-1067, December.
    17. Elie Bouri & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Infectious Diseases, Market Uncertainty and Oil Market Volatility," Energies, MDPI, vol. 13(16), pages 1-8, August.
    18. Stefano Palminteri & Germain Lefebvre & Emma J. Kilford & Sarah-Jayne Blakemore, 2017. "Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing," Post-Print hal-04134742, HAL.
    19. Shiller, Robert J, 1981. "The Use of Volatility Measures in Assessing Market Efficiency," Journal of Finance, American Finance Association, vol. 36(2), pages 291-304, May.
    20. Yao, Qiwei & Tong, Howell, 1996. "Asymmetric least squares regression estimation: a nonparametric approach," LSE Research Online Documents on Economics 19423, London School of Economics and Political Science, LSE Library.
    21. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    22. Oumayma GHARBI & Yousra TRICHILI & Mouna BOUJELBENE ABBES, 2022. "Impact of the COVID-19 pandemic on the relationship between uncertainty factors, investor’s behavioral biases and the stock market reaction of US Fintech companies," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 13(1), pages 101-122, June.
    23. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    24. Didik Susilo & Sugeng Wahyudi & Irene Rini Demi Pangestuti & Bayu Adi Nugroho & Robiyanto Robiyanto, 2020. "Cryptocurrencies: Hedging Opportunities From Domestic Perspectives in Southeast Asia Emerging Markets," SAGE Open, , vol. 10(4), pages 21582440209, November.
    25. Darko Vukovic & Moinak Maiti & Zoran Grubisic & Elena M. Grigorieva & Michael Frömmel, 2021. "COVID-19 Pandemic: Is the Crypto Market a Safe Haven? The Impact of the First Wave," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    26. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    27. Cafferata, Alessia & Tramontana, Fabio, 2019. "A financial market model with confirmation bias," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 252-259.
    28. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yundong Tu & Siwei Wang, 2023. "Variable Screening and Model Averaging for Expectile Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 574-598, June.
    2. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    3. Zhang, Feipeng & Li, Qunhua, 2017. "A continuous threshold expectile model," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 49-66.
    4. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
    5. Man, Rebeka & Tan, Kean Ming & Wang, Zian & Zhou, Wen-Xin, 2024. "Retire: Robust expectile regression in high dimensions," Journal of Econometrics, Elsevier, vol. 239(2).
    6. Tae-Hwy Lee & Aman Ullah & He Wang, 2019. "The Second-Order Asymptotic Properties of Asymmetric Least Squares Estimation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 201-233, September.
    7. Yao, Yinhong & Li, Jianping & Sun, Xiaolei, 2021. "Measuring the risk of Chinese Fintech industry: evidence from the stock index," Finance Research Letters, Elsevier, vol. 39(C).
    8. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2022. "Spillover effects between commodity and stock markets: A SDSES approach," Resources Policy, Elsevier, vol. 79(C).
    9. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    10. repec:hum:wpaper:sfb649dp2015-052 is not listed on IDEAS
    11. Antonio Rubia Serrano & Lidia Sanchis-Marco, 2015. "Measuring Tail-Risk Cross-Country Exposures in the Banking Industry," Working Papers. Serie AD 2015-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    12. Xiu Xu & Andrija Mihoci & Wolfgang Karl Hardle, 2020. "lCARE -- localizing Conditional AutoRegressive Expectiles," Papers 2009.13215, arXiv.org.
    13. Zhang, Yue-Jun & Ma, Shu-Jiao, 2019. "How to effectively estimate the time-varying risk spillover between crude oil and stock markets? Evidence from the expectile perspective," Energy Economics, Elsevier, vol. 84(C).
    14. Zongwu Cai & Ying Fang & Dingshi Tian, 2018. "Assessing Tail Risk Using Expectile Regressions with Partially Varying Coefficients," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201804, University of Kansas, Department of Economics, revised Oct 2018.
    15. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    16. Ha, Le Thanh & Bouteska, Ahmed & Mefteh-Wali, Salma & The Anh, Pham, 2023. "Fluctuations in gold prices in Vietnam during the COVID-19 pandemic: Insights from a time-varying parameter autoregression model," Resources Policy, Elsevier, vol. 86(PB).
    17. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    18. Garcia-Jorcano, Laura & Sanchis-Marco, Lidia, 2021. "Systemic-systematic risk in financial system: A dynamic ranking based on expectiles," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 330-365.
    19. Tu, Yundong & Wang, Siwei, 2020. "Jackknife model averaging for expectile regressions in increasing dimension," Economics Letters, Elsevier, vol. 197(C).
    20. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    21. Syuhada, Khreshna & Hakim, Arief & Suprijanto, Djoko & Muchtadi-Alamsyah, Intan & Arbi, Lukman, 2022. "Is Tether a safe haven of safe haven amid COVID-19? An assessment against Bitcoin and oil using improved measures of risk," Resources Policy, Elsevier, vol. 79(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:30:y:2025:i:1:p:44-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.