IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v38y2021ics1544612319306774.html
   My bibliography  Save this article

Is there a relationship between the time scaling property of asset returns and the outliers? Evidence from international financial markets

Author

Listed:
  • González-Sánchez, Mariano

Abstract

Stylized facts are statistical properties present in high frequency returns of financial assets. While some of them supposes that returns are not Gaussian, another, called time scaling, involves that decreasing the frequency of observation, the returns converge to normal distribution. This paper find evidence that the existence of scaling and outliers entails other stylized facts. Also, a methodology for identifying outliers is proposed and applied to both simulated series and 1300 market assets. Results indicate that all market returns have time scaling (between 2 and 28 days) and, in 95% of cases, daily outliers represent less than 6% of observations.

Suggested Citation

  • González-Sánchez, Mariano, 2021. "Is there a relationship between the time scaling property of asset returns and the outliers? Evidence from international financial markets," Finance Research Letters, Elsevier, vol. 38(C).
  • Handle: RePEc:eee:finlet:v:38:y:2021:i:c:s1544612319306774
    DOI: 10.1016/j.frl.2020.101510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612319306774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pena, Daniel, 1990. "Influential Observations in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 235-241, April.
    2. Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Post-Print hal-00765466, HAL.
    3. Kim, Yunmi & Kim, Tae-Hwan & Ergün, Tolga, 2015. "The instability of the Pearson correlation coefficient in the presence of coincidental outliers," Finance Research Letters, Elsevier, vol. 13(C), pages 243-257.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Park, Beum-Jo, 2002. "An Outlier Robust GARCH Model and Forecasting Volatility of Exchange Rate Returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(5), pages 381-393, August.
    8. Philip Hans Franses & Dick van Dijk & Andre Lucas, 2004. "Short patches of outliers, ARCH and volatility modelling," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 221-231.
    9. Roberto Baragona & Francesco Battaglia & Domenico Cucina, 2016. "Empirical Likelihood for Outlier Detection and Estimation in Autoregressive Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 315-336, May.
    10. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    11. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
    12. Ahmad Yamin & Donayre Luiggi, 2016. "Outliers and persistence in threshold autoregressive processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(1), pages 37-56, February.
    13. Van Dijk, Dick & Franses, Philip Hans & Lucas, Andre, 1999. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 217-235, April.
    14. Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 551-565.
    15. Michael R. Elliott & Nicolas Stettler, 2007. "Using a mixture model for multiple imputation in the presence of outliers: the ‘Healthy for life’ project," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 63-78, January.
    16. Min-Hsien Chiang & Ray Yeutien Chou & Li-Min Wang, 2016. "Outlier Detection in the Lognormal Logarithmic Conditional Autoregressive Range Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(1), pages 126-144, February.
    17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beatriz Catalan & F. Javier Trivez, 2007. "Forecasting volatility in GARCH models with additive outliers," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 591-596.
    2. Min-Hsien Chiang & Ray Yeutien Chou & Li-Min Wang, 2016. "Outlier Detection in the Lognormal Logarithmic Conditional Autoregressive Range Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(1), pages 126-144, February.
    3. F. Javier Trivez & Beatriz Catalan, 2009. "Detecting level shifts in ARMA-GARCH (1,1) Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(6), pages 679-697.
    4. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The role of outliers and oil price shocks on volatility of metal prices," Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
    8. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    9. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    10. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    11. Amélie Charles, 2008. "Forecasting volatility with outliers in GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 551-565.
    12. Piotr Fiszeder & Marta Ma³ecka, 2022. "Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(4), pages 939-967, December.
    13. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    14. Lisa Crosato & Luigi Grossi, 2019. "Correcting outliers in GARCH models: a weighted forward approach," Statistical Papers, Springer, vol. 60(6), pages 1939-1970, December.
    15. Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. WenShwo Fang & Stephen M. Miller, 2014. "Output Growth and its Volatility: The Gold Standard through the Great Moderation," Southern Economic Journal, John Wiley & Sons, vol. 80(3), pages 728-751, January.
    17. Melike Bildirici & Nilgun Guler Bayazit & Yasemen Ucan, 2020. "Analyzing Crude Oil Prices under the Impact of COVID-19 by Using LSTARGARCHLSTM," Energies, MDPI, vol. 13(11), pages 1-18, June.
    18. Vasiliki Chatzikonstanti & Michail Karoglou, 2022. "Can black swans be tamed with a flexible mean‐variance specification?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3202-3227, July.
    19. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    20. Grané, Aurea & Veiga, Helena, 2010. "Wavelet-based detection of outliers in financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2580-2593, November.

    More about this item

    Keywords

    Stylized facts; Time scaling; Outlier; Heteroskedasticity; Leptokurtosis;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:38:y:2021:i:c:s1544612319306774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.