IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v30y2019icp60-68.html
   My bibliography  Save this article

Testing the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the crude oil prices

Author

Listed:
  • Ghazani, Majid Mirzaee
  • Ebrahimi, Seyed Babak

Abstract

This paper examines the existence of the adaptive market hypothesis (AMH) as an evolutionary alternative to the efficient market hypothesis (EMH) by applying daily returns on the three benchmark crude oils. The data coverage of daily returns is from 2003 to 2018. The automatic portmanteau and generalized spectral tests is applied in this study. The results show that the Brent and the WTI oil markets possess the highest efficiency levels. In addition, the behavior of OPEC basket data represents that when we approaching toward longer window lengths (e.g. from 100 to 500-days); the degree of conformity with AMH decreases.

Suggested Citation

  • Ghazani, Majid Mirzaee & Ebrahimi, Seyed Babak, 2019. "Testing the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the crude oil prices," Finance Research Letters, Elsevier, vol. 30(C), pages 60-68.
  • Handle: RePEc:eee:finlet:v:30:y:2019:i:c:p:60-68
    DOI: 10.1016/j.frl.2019.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612318307736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2019.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles, Amélie & Darné, Olivier, 2009. "The efficiency of the crude oil markets: Evidence from variance ratio tests," Energy Policy, Elsevier, vol. 37(11), pages 4267-4272, November.
    2. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    3. J. Doyne Farmer & Andrew W. Lo, 1999. "Frontiers of Finance: Evolution and Efficient Markets," Working Papers 99-06-039, Santa Fe Institute.
    4. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    5. Bouoiyour, Jamal & Selmi, Refk & Wohar, Mark E., 2018. "Are Islamic stock markets efficient? A multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 26(C), pages 100-105.
    6. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    7. François Lescaroux & Valérie Mignon, 2008. "On the Influence of Oil Prices on Economic Activity and Other Macroeconomic and Financial Variables," Working Papers 2008-05, CEPII research center.
    8. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    9. Lobato, Ignacio & Nankervis, John C & Savin, N E, 2001. "Testing for Autocorrelation Using a Modified Box-Pierce Q Test," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 187-205, February.
    10. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    11. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan, 2019. "Stock market efficiency analysis using long spans of Data: A multifractal detrended fluctuation approach," Finance Research Letters, Elsevier, vol. 28(C), pages 398-411.
    12. Levich, Richard M. & Potì, Valerio, 2015. "Predictability and ‘good deals’ in currency markets," International Journal of Forecasting, Elsevier, vol. 31(2), pages 454-472.
    13. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    14. Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 455-474, May.
    15. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Generalized spectral tests for the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 134(1), pages 151-185, September.
    16. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    17. repec:bla:opecrv:v:32:y:2008:i:4:p:343-380 is not listed on IDEAS
    18. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    19. Wang, Yudong & Liu, Li, 2010. "Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis," Energy Economics, Elsevier, vol. 32(5), pages 987-992, September.
    20. Lazăr, Dorina & Todea, Alexandru & Filip, Diana, 2012. "Martingale difference hypothesis and financial crisis: Empirical evidence from European emerging foreign exchange markets," Economic Systems, Elsevier, vol. 36(3), pages 338-350.
    21. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    22. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    23. Hiremath, Gourishankar S. & Narayan, Seema, 2016. "Testing the adaptive market hypothesis and its determinants for the Indian stock markets," Finance Research Letters, Elsevier, vol. 19(C), pages 173-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiwari, Aviral Kumar & Kumar, Satish & Pathak, Rajesh & Roubaud, David, 2019. "Testing the oil price efficiency using various measures of long-range dependence," Energy Economics, Elsevier, vol. 84(C).
    2. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    3. Okoroafor, Ugochi Chibuzor & Leirvik, Thomas, 2022. "Time varying market efficiency in the Brent and WTI crude market," Finance Research Letters, Elsevier, vol. 45(C).
    4. Clement Moyo & Izunna Anyikwa & Andrew Phiri, 2023. "The Impact of Covid-19 on Oil Market Returns: Has Market Efficiency Being Violated?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 118-127, January.
    5. Babangida, Jamilu Said, 2023. "Nonlinearity in emerging market indices: A comprehensive study of stock exchange market dynamics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 72, pages 23-37.
    6. Du, Xiaoxu & Tang, Zhenpeng & Chen, Kaijie, 2023. "A novel crude oil futures trading strategy based on volume-price time-frequency decomposition with ensemble deep reinforcement learning," Energy, Elsevier, vol. 285(C).
    7. Mensi, Walid & Sensoy, Ahmet & Vo, Xuan Vinh & Kang, Sang Hoon, 2020. "Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices," Resources Policy, Elsevier, vol. 69(C).
    8. Ren, Xiaohang & Xiao, Ya & Duan, Kun & Urquhart, Andrew, 2024. "Spillover effects between fossil energy and green markets: Evidence from informational inefficiency," Energy Economics, Elsevier, vol. 131(C).
    9. Alaba, Oluwayemisi O. & Ojo, Oluwadare O. & Yaya, OlaOluwa S & Abu, Nurudeen & Ajobo, Saheed A., 2021. "Comparative Analysis of Market Efficiency and Volatility of Energy Prices Before and During COVID-19 Pandemic Periods," MPRA Paper 109825, University Library of Munich, Germany.
    10. Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
    11. Claudiu Tiberiu Albulescu & Aviral Kumar Tiwari & Phouphet Kyophilavong, 2021. "Nonlinearities and Chaos: A New Analysis of CEE Stock Markets," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
    12. Majid Mirzaee Ghazani & Mohammad Ali Jafari, 2021. "Cryptocurrencies, gold, and WTI crude oil market efficiency: a dynamic analysis based on the adaptive market hypothesis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    13. Muhammad Naeem Shahid, 2022. "COVID-19 and adaptive behavior of returns: evidence from commodity markets," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    14. Bhatia, Madhur, 2023. "On the efficiency of the gold returns: An econometric exploration for India, USA and Brazil," Resources Policy, Elsevier, vol. 82(C).
    15. Akbar, Muhammad & Ullah, Ihsan & Ali, Shahid & Rehman, Naser, 2024. "Adaptive market hypothesis: A comparison of Islamic and conventional stock indices," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 460-477.
    16. Shao Ying-Hui & Liu Ying-Lin & Yang Yan-Hong, 2022. "The short-term effect of COVID-19 pandemic on China's crude oil futures market: A study based on multifractal analysis," Papers 2204.05199, arXiv.org.
    17. Okorie, David Iheke & Lin, Boqiang, 2021. "Adaptive market hypothesis: The story of the stock markets and COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    18. Espinosa-Paredes, G. & Rodriguez, E. & Alvarez-Ramirez, J., 2022. "A singular value decomposition entropy approach to assess the impact of Covid-19 on the informational efficiency of the WTI crude oil market," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Mefteh-Wali, Salma & Owusu, Patrick, 2023. "Measuring price efficiency in petroleum markets: New insights using various long-range dependence techniques," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okorie, David Iheke & Lin, Boqiang, 2021. "Adaptive market hypothesis: The story of the stock markets and COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    3. Ibarra-Valdez, C. & Alvarez, J. & Alvarez-Ramirez, J., 2016. "Randomness confidence bands of fractal scaling exponents for financial price returns," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 119-124.
    4. Majid Mirzaee Ghazani & Mohammad Ali Jafari, 2021. "Cryptocurrencies, gold, and WTI crude oil market efficiency: a dynamic analysis based on the adaptive market hypothesis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.
    5. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    6. Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
    7. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    8. Zhang, Bing, 2013. "Are the crude oil markets becoming more efficient over time? New evidence from a generalized spectral test," Energy Economics, Elsevier, vol. 40(C), pages 875-881.
    9. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    10. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    11. Rodriguez, E. & Aguilar-Cornejo, M. & Femat, R. & Alvarez-Ramirez, J., 2014. "US stock market efficiency over weekly, monthly, quarterly and yearly time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 554-564.
    12. Urquhart, Andrew & McGroarty, Frank, 2016. "Are stock markets really efficient? Evidence of the adaptive market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 39-49.
    13. Deniz Erer & Elif Erer & Selim Güngör, 2023. "The aggregate and sectoral time-varying market efficiency during crisis periods in Turkey: a comparative analysis with COVID-19 outbreak and the global financial crisis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    14. Mushinada, Venkata Narasimha Chary, 2020. "Are individual investors irrational or adaptive to market dynamics?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    15. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    16. Andrew Urquhart, 2017. "How predictable are precious metal returns?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(14), pages 1390-1413, November.
    17. Katusiime, Lorna & Shamsuddin, Abul & Agbola, Frank W., 2015. "Foreign exchange market efficiency and profitability of trading rules: Evidence from a developing country," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 315-332.
    18. Tiwari, Aviral Kumar & Umar, Zaghum & Alqahtani, Faisal, 2021. "Existence of long memory in crude oil and petroleum products: Generalised Hurst exponent approach," Research in International Business and Finance, Elsevier, vol. 57(C).
    19. Alvarez-Ramirez, Jose & Rodriguez, Eduardo & Espinosa-Paredes, Gilberto, 2012. "Is the US stock market becoming weakly efficient over time? Evidence from 80-year-long data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5643-5647.
    20. Zhang, Bing & Li, Xiao-Ming & He, Fei, 2014. "Testing the evolution of crude oil market efficiency: Data have the conn," Energy Policy, Elsevier, vol. 68(C), pages 39-52.

    More about this item

    Keywords

    Evolutionary; Adaptive market hypothesis; Weak-form efficiency; Crude oil prices;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:30:y:2019:i:c:p:60-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.