IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v62y2013icp150-161.html
   My bibliography  Save this article

In-cylinder spectroscopic measurements of knocking combustion in a SI engine fuelled with butanol–gasoline blend

Author

Listed:
  • Merola, Simona Silvia
  • Valentino, Gerardo
  • Tornatore, Cinzia
  • Marchitto, Luca

Abstract

Recent studies have shown that biobutanol can play a significant role in a sustainable, non-petroleum-based, industrial system. About the use in spark-ignition engines, butanol blended with conventional hydrocarbon fuels can increase fuel octane rating and power for a given engine displacement and compression ratio. Several reference studies measured performance, fuel consumption and exhaust emissions for spark-ignition engines fuelled with butanol–gasoline blends. Very few experiments have been performed on in-cylinder butanol–gasoline combustion process. In this paper, an experimental investigation was carried out in a port fuel-injection, spark-ignition engine with an external boosting device. A blend of 20% of n-butanol in volume with commercial gasoline was used for the experiments. The optical engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications as the research engine. The engine worked under stoichiometric mixture at 2000 rpm, medium boosting and wide open throttle. Knocking condition was realized advancing the spark timing. In cylinder UV-visible natural emission spectroscopy was applied to follow the formation and the evolution of the principal compounds and radical species that characterize the normal and abnormal combustion process from the spark ignition until the exhaust. Particular interest was devoted to OH evolution.

Suggested Citation

  • Merola, Simona Silvia & Valentino, Gerardo & Tornatore, Cinzia & Marchitto, Luca, 2013. "In-cylinder spectroscopic measurements of knocking combustion in a SI engine fuelled with butanol–gasoline blend," Energy, Elsevier, vol. 62(C), pages 150-161.
  • Handle: RePEc:eee:energy:v:62:y:2013:i:c:p:150-161
    DOI: 10.1016/j.energy.2013.05.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213004775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.05.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tornatore, Cinzia & Marchitto, Luca & Valentino, Gerardo & Esposito Corcione, Felice & Merola, Simona Silvia, 2012. "Optical diagnostics of the combustion process in a PFI SI boosted engine fueled with butanol–gasoline blend," Energy, Elsevier, vol. 45(1), pages 277-287.
    2. Irimescu, Adrian, 2012. "Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol," Applied Energy, Elsevier, vol. 96(C), pages 477-483.
    3. Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.
    4. Rathmann, Régis & Szklo, Alexandre & Schaeffer, Roberto, 2010. "Land use competition for production of food and liquid biofuels: An analysis of the arguments in the current debate," Renewable Energy, Elsevier, vol. 35(1), pages 14-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    2. Vafamehr, Hassan & Cairns, Alasdair & Sampson, Ojon & Koupaie, Mohammadmohsen Moslemin, 2016. "The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine," Applied Energy, Elsevier, vol. 179(C), pages 687-697.
    3. Şahin, Zehra & Aksu, Orhan N., 2015. "Experimental investigation of the effects of using low ratio n-butanol/diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine," Renewable Energy, Elsevier, vol. 77(C), pages 279-290.
    4. Yuanxu Li & Zhi Ning & Chia-fon F. Lee & Timothy H. Lee & Junhao Yan, 2018. "Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends," Energies, MDPI, vol. 11(5), pages 1-16, May.
    5. Maghbouli, Amin & Yang, Wenming & An, Hui & Shafee, Sina & Li, Jing & Mohammadi, Samira, 2014. "Modeling knocking combustion in hydrogen assisted compression ignition diesel engines," Energy, Elsevier, vol. 76(C), pages 768-779.
    6. Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
    7. Song, Jingeun & Kim, Taehoon & Jang, Jihwan & Park, Sungwook, 2015. "Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine," Energy, Elsevier, vol. 93(P2), pages 1758-1768.
    8. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    9. d'Adamo, A. & Breda, S. & Berni, F. & Fontanesi, S., 2019. "The potential of statistical RANS to predict knock tendency: Comparison with LES and experiments on a spark-ignition engine," Applied Energy, Elsevier, vol. 249(C), pages 126-142.
    10. Irimescu, A. & Marchitto, L. & Merola, S.S. & Tornatore, C. & Valentino, G., 2015. "Combustion process investigations in an optically accessible DISI engine fuelled with n-butanol during part load operation," Renewable Energy, Elsevier, vol. 77(C), pages 363-376.
    11. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    12. Stanislaw Szwaja & Michal Gruca & Michal Pyrc & Romualdas Juknelevičius, 2023. "Glycerol as an Anti-Knock Additive and Secondary Fuel as a Substitute for Gasoline-Based Fuels for the IC Engine," Energies, MDPI, vol. 16(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    2. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
    3. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    4. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    5. Deng, Banglin & Fu, Jianqin & Zhang, Daming & Yang, Jing & Feng, Renhua & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine," Energy, Elsevier, vol. 60(C), pages 230-241.
    6. Song, Jingeun & Lee, Ziyoung & Song, Jaecheon & Park, Sungwook, 2018. "Effects of injection strategy and coolant temperature on hydrocarbon and particulate emissions from a gasoline direct injection engine with high pressure injection up to 50 MPa," Energy, Elsevier, vol. 164(C), pages 512-522.
    7. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.
    8. Elfasakhany, Ashraf, 2018. "Exhaust emissions and performance of ternary iso-butanol–bio-methanol–gasoline and n-butanol–bio-ethanol–gasoline fuel blends in spark-ignition engines: Assessment and comparison," Energy, Elsevier, vol. 158(C), pages 830-844.
    9. Feng, Renhua & Fu, Jianqin & Yang, Jing & Wang, Yi & Li, Yangtao & Deng, Banglin & Liu, Jingping & Zhang, Daming, 2015. "Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend," Renewable Energy, Elsevier, vol. 81(C), pages 113-122.
    10. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    11. Bauer, Fredric & Hulteberg, Christian, 2014. "Isobutanol from glycerine – A techno-economic evaluation of a new biofuel production process," Applied Energy, Elsevier, vol. 122(C), pages 261-268.
    12. Yu, Hanzhengnan & Liang, Xingyu & Shu, Gequn & Wang, Yuesen & Sun, Xiuxiu & Zhang, Hongsheng, 2018. "Numerical investigation of the effect of two-stage injection strategy on combustion and emission characteristics of a diesel engine," Applied Energy, Elsevier, vol. 227(C), pages 634-642.
    13. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    14. Gbadebo Oladosu & Siwa Msangi, 2013. "Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    15. Sprei, Frances & Karlsson, Sten, 2013. "Energy efficiency versus gains in consumer amenities—An example from new cars sold in Sweden," Energy Policy, Elsevier, vol. 53(C), pages 490-499.
    16. Han, S.-H. & Cho, D.H. & Kim, Y.H. & Shin, S.-J., 2013. "Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation," Energy, Elsevier, vol. 61(C), pages 13-17.
    17. Diermeier, Matthias & Schmidt, Torsten, 2014. "Oil price effects on land use competition: an empirical analysis," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), pages 1-17.
    18. Dhamodaran, Gopinath & Esakkimuthu, Ganapathy Sundaram & Pochareddy, Yashwanth Kutti & Sivasubramanian, Harish, 2017. "Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine," Energy, Elsevier, vol. 125(C), pages 726-735.
    19. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    20. Steubing, B. & Zah, R. & Waeger, P. & Ludwig, C., 2010. "Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2256-2265, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:62:y:2013:i:c:p:150-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.