IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp687-697.html
   My bibliography  Save this article

The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine

Author

Listed:
  • Vafamehr, Hassan
  • Cairns, Alasdair
  • Sampson, Ojon
  • Koupaie, Mohammadmohsen Moslemin

Abstract

The work was concerned with improving understanding of the chemical and physical trade-offs when employing transient over-fuelling to control auto-ignition in gasoline spark ignition engines under knock intensities not usually tolerated in optical engines. The single cylinder engine used included full bore overhead optical access capable of withstanding unusually high in-cylinder pressures. Heavy knock was deliberately induced by adopting inlet air heating and a primary reference fuel blend of reduced octane rating. High-speed chemiluminescence imaging and simultaneous in-cylinder pressure data measurement were used to evaluate the combustion events. Under normal operation the engine was operated under port fuel injection with a stoichiometric air-fuel mixture. Multiple centred auto-ignition events were regularly observed, with knock intensities of up to ∼30bar. Additional excess fuel was then introduced directly into the end-gas in short transient bursts. As the mass of excess fuel was progressively increased a trade-off was apparent, with knock intensity first increasing by up to 65% before lower unburned gas temperatures suppressed knock under extremely rich conditions. This trade-off is not usually observed during conventional low intensity knock suppression via over-fuelling and has been associated with the competing effects of reducing auto-ignition delay time and charge cooling/ratio of specific heats. Overall, the results demonstrate the risks in employing excess fuel to suppress knock deep within a heavy knocking combustion regime (potentially including a Super-Knock regime).

Suggested Citation

  • Vafamehr, Hassan & Cairns, Alasdair & Sampson, Ojon & Koupaie, Mohammadmohsen Moslemin, 2016. "The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine," Applied Energy, Elsevier, vol. 179(C), pages 687-697.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:687-697
    DOI: 10.1016/j.apenergy.2016.07.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916309795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turner, J.W.G. & Pearson, R.J. & Dekker, E. & Iosefa, B. & Johansson, K. & ac Bergström, K., 2013. "Extending the role of alcohols as transport fuels using iso-stoichiometric ternary blends of gasoline, ethanol and methanol," Applied Energy, Elsevier, vol. 102(C), pages 72-86.
    2. De Bellis, Vincenzo, 2016. "Performance optimization of a spark-ignition turbocharged VVA engine under knock limited operation," Applied Energy, Elsevier, vol. 164(C), pages 162-174.
    3. Zhen, Xudong & Wang, Yang & Xu, Shuaiqing & Zhu, Yongsheng & Tao, Chengjun & Xu, Tao & Song, Mingzhi, 2012. "The engine knock analysis – An overview," Applied Energy, Elsevier, vol. 92(C), pages 628-636.
    4. Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
    5. Merola, Simona Silvia & Valentino, Gerardo & Tornatore, Cinzia & Marchitto, Luca, 2013. "In-cylinder spectroscopic measurements of knocking combustion in a SI engine fuelled with butanol–gasoline blend," Energy, Elsevier, vol. 62(C), pages 150-161.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ceyuan & Pal, Pinaki & Ameen, Muhsin & Feng, Dengquan & Wei, Haiqiao, 2020. "Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine," Applied Energy, Elsevier, vol. 261(C).
    2. Lijia Zhong & Changwen Liu, 2019. "Numerical Analysis of End-Gas Autoignition and Pressure Oscillation in a Downsized SI Engine Using Large Eddy Simulation," Energies, MDPI, vol. 12(20), pages 1-20, October.
    3. Zhang, Qinghui & Hao, Zhiyong & Zheng, Xu & Yang, Wenying, 2017. "Characteristics and effect factors of pressure oscillation in multi-injection DI diesel engine at high-load conditions," Applied Energy, Elsevier, vol. 195(C), pages 52-66.
    4. d'Adamo, A. & Breda, S. & Berni, F. & Fontanesi, S., 2019. "The potential of statistical RANS to predict knock tendency: Comparison with LES and experiments on a spark-ignition engine," Applied Energy, Elsevier, vol. 249(C), pages 126-142.
    5. Zhou, Lei & Hua, Jianxiong & Wei, Haiqiao & Dong, Kai & Feng, Dengquan & Shu, Gequn, 2018. "Knock characteristics and combustion regime diagrams of multiple combustion modes based on experimental investigations," Applied Energy, Elsevier, vol. 229(C), pages 31-41.
    6. Karvountzis-Kontakiotis, Apostolos & Vafamehr, Hassan & Cairns, Alasdair & Peckham, Mark, 2018. "Study on pollutants formation under knocking combustion conditions using an optical single cylinder SI research engine," Energy, Elsevier, vol. 158(C), pages 899-910.
    7. Lounici, M.S. & Benbellil, M.A. & Loubar, K. & Niculescu, D.C. & Tazerout, M., 2017. "Knock characterization and development of a new knock indicator for dual-fuel engines," Energy, Elsevier, vol. 141(C), pages 2351-2361.
    8. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Investigation of energy transformation and damage effect under severe knock of engines," Applied Energy, Elsevier, vol. 203(C), pages 506-521.
    9. Chen, Lin & Zhang, Ren & Pan, Jiaying & Wei, Haiqiao, 2020. "Effects of partitioned fuel distribution on auto-ignition and knocking under spark assisted compression ignition conditions," Applied Energy, Elsevier, vol. 260(C).
    10. Shi, Hao & Uddeen, Kalim & An, Yanzhao & Pei, Yiqiang & Johansson, Bengt, 2021. "Multiple spark plugs coupled with pressure sensors: A new approach for knock mechanism study on SI engines," Energy, Elsevier, vol. 227(C).
    11. Xu, Han & Weng, Chunsheng & Gao, Jian & Yao, Chunde, 2020. "The effect of energy intensification on the formation of severe knock in internal combustion engines," Applied Energy, Elsevier, vol. 266(C).
    12. Xu, Han & Gao, Jian & Yao, Anren & Yao, Chunde, 2018. "The effect of the energy convergence and energy dissipation on the formation of severe knock," Applied Energy, Elsevier, vol. 228(C), pages 1243-1254.
    13. Chen, Lin & Wei, Haiqiao & Chen, Ceyuan & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2019. "Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine," Energy, Elsevier, vol. 166(C), pages 318-325.
    14. Pan, Jiaying & Wei, Haiqiao & Shu, Gequn & Pan, Mingzhang & Feng, Dengquan & Li, Nan, 2017. "LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine," Applied Energy, Elsevier, vol. 191(C), pages 183-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    2. d'Adamo, A. & Breda, S. & Berni, F. & Fontanesi, S., 2019. "The potential of statistical RANS to predict knock tendency: Comparison with LES and experiments on a spark-ignition engine," Applied Energy, Elsevier, vol. 249(C), pages 126-142.
    3. Xu, Han & Yao, Anren & Yao, Chunde & Gao, Jian, 2017. "Investigation of energy transformation and damage effect under severe knock of engines," Applied Energy, Elsevier, vol. 203(C), pages 506-521.
    4. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    5. Duan, Xiongbo & Liu, Jingping & Yao, Jun & Chen, Zheng & Wu, Cheng & Chen, Ceyuan & Dong, Hao, 2018. "Performance, combustion and knock assessment of a high compression ratio and lean-burn heavy-duty spark-ignition engine fuelled with n-butane and liquefied methane gas blend," Energy, Elsevier, vol. 158(C), pages 256-268.
    6. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    7. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    8. d'Adamo, Alessandro & Breda, Sebastiano & Fontanesi, Stefano & Irimescu, Adrian & Merola, Simona Silvia & Tornatore, Cinzia, 2017. "A RANS knock model to predict the statistical occurrence of engine knock," Applied Energy, Elsevier, vol. 191(C), pages 251-263.
    9. Xu, Han & Weng, Chunsheng & Gao, Jian & Yao, Chunde, 2020. "The effect of energy intensification on the formation of severe knock in internal combustion engines," Applied Energy, Elsevier, vol. 266(C).
    10. Pan, Jiaying & Wei, Haiqiao & Shu, Gequn & Pan, Mingzhang & Feng, Dengquan & Li, Nan, 2017. "LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine," Applied Energy, Elsevier, vol. 191(C), pages 183-192.
    11. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    12. Maghbouli, Amin & Yang, Wenming & An, Hui & Shafee, Sina & Li, Jing & Mohammadi, Samira, 2014. "Modeling knocking combustion in hydrogen assisted compression ignition diesel engines," Energy, Elsevier, vol. 76(C), pages 768-779.
    13. Teodosio, Luigi & Pirrello, Dino & Berni, Fabio & De Bellis, Vincenzo & Lanzafame, Rosario & D'Adamo, Alessandro, 2018. "Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine," Applied Energy, Elsevier, vol. 216(C), pages 91-104.
    14. Jung, Dongwon & Lee, Sejun, 2018. "An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation," Applied Energy, Elsevier, vol. 228(C), pages 1754-1766.
    15. Zhen, Xudong & Tian, Zhi & Wang, Yang & Xu, Meng & Liu, Daming & Li, Xiaoyan, 2022. "Knock analysis of bio-butanol in TISI engine based on chemical reaction kinetics," Energy, Elsevier, vol. 239(PC).
    16. Chen, Ceyuan & Pal, Pinaki & Ameen, Muhsin & Feng, Dengquan & Wei, Haiqiao, 2020. "Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine," Applied Energy, Elsevier, vol. 261(C).
    17. Yang, Zhuyong & Miganakallu, Niranjan & Miller, Tyler & Bonfochi Vinhaes, Vinicius & Worm, Jeremy & Naber, Jeffrey & Roth, David, 2020. "Investigation of high load operation of spark-ignited over-expanded Atkinson cycle engine," Applied Energy, Elsevier, vol. 262(C).
    18. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    19. Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
    20. Karthic, S.V. & Senthil Kumar, M., 2021. "Experimental investigations on hydrogen biofueled reactivity controlled compression ignition engine using open ECU," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:687-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.