IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v61y2013icp13-17.html
   My bibliography  Save this article

Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation

Author

Listed:
  • Han, S.-H.
  • Cho, D.H.
  • Kim, Y.H.
  • Shin, S.-J.

Abstract

For the sustainable production of transportation fuel from renewable resources, the production of biobutanol via ABE (acetone–butanol–ethanol) fermentation was investigated using the acid hydrolysate of short-rotation coppice willow as a raw material. Two-year-old willow bark and woody core biomass were selected as biomass sources for this work. ABE fermentation was accomplished using Clostridium beijerinckii. The overall chemical composition and monosaccharide composition in the woody core and bark were evaluated. According to the overall compositional analysis, the stem biomass contained 70% polysaccharides, which was significantly higher than that of bark, which was 46%. However, the better response of the bark biomass to acid hydrolysis and presence of possible fermentation inhibitors (acetic acid, formic acid, and total phenolics) led to a similar monosaccharide concentration in the stem and bark. Willow bark and the woody core showed similar ABE fermentation patterns with C. beijerinckii. The monosaccharide solutions from both the bark and stem biomass had problems in the transition from the acid-producing pathway to the solvent-producing pathway during ABE fermentation.

Suggested Citation

  • Han, S.-H. & Cho, D.H. & Kim, Y.H. & Shin, S.-J., 2013. "Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation," Energy, Elsevier, vol. 61(C), pages 13-17.
  • Handle: RePEc:eee:energy:v:61:y:2013:i:c:p:13-17
    DOI: 10.1016/j.energy.2013.04.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.04.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tornatore, Cinzia & Marchitto, Luca & Valentino, Gerardo & Esposito Corcione, Felice & Merola, Simona Silvia, 2012. "Optical diagnostics of the combustion process in a PFI SI boosted engine fueled with butanol–gasoline blend," Energy, Elsevier, vol. 45(1), pages 277-287.
    2. Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
    3. Tran, Luc Sy & Sirjean, Baptiste & Glaude, Pierre-Alexandre & Fournet, René & Battin-Leclerc, Frédérique, 2012. "Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels," Energy, Elsevier, vol. 43(1), pages 4-18.
    4. Irimescu, Adrian, 2011. "Fuel conversion efficiency of a port injection engine fueled with gasoline–isobutanol blends," Energy, Elsevier, vol. 36(5), pages 3030-3035.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    2. Yoon, Su-Young & Kim, Byung-Ro & Han, Sim-Hee & Shin, Soo-Jeong, 2015. "Different response between woody core and bark of goat willow (Salix caprea L.) to concentrated phosphoric acid pretreatment followed by enzymatic saccharification," Energy, Elsevier, vol. 81(C), pages 21-26.
    3. Morsy, Fatthy Mohamed & Ibrahim, Samir Hag, 2016. "Concomitant hydrolysis of sucrose by the long half-life time yeast invertase and hydrogen production by the hydrogen over-producing Escherichia coli HD701," Energy, Elsevier, vol. 109(C), pages 412-419.
    4. Yoon, S.-Y. & Han, S.-H. & Shin, S.-J., 2014. "The effect of hemicelluloses and lignin on acid hydrolysis of cellulose," Energy, Elsevier, vol. 77(C), pages 19-24.
    5. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    6. Zhou, Zhiyou & Peng, Shuaiying & Jing, Yujie & Wei, Saijin & Zhang, Qinghua & Ding, Huanhuan & Li, Hanguang, 2023. "Exploration of separate hydrolysis and fermentation and simultaneous saccharification and co-fermentation for acetone, butanol, and ethanol production from combined diluted acid with laccase pretreate," Energy, Elsevier, vol. 279(C).
    7. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    8. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    9. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    10. Morsy, Fatthy Mohamed, 2015. "CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system," Energy, Elsevier, vol. 87(C), pages 594-604.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    2. Deng, Banglin & Fu, Jianqin & Zhang, Daming & Yang, Jing & Feng, Renhua & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine," Energy, Elsevier, vol. 60(C), pages 230-241.
    3. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    4. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
    5. Yoon, S.-Y. & Han, S.-H. & Shin, S.-J., 2014. "The effect of hemicelluloses and lignin on acid hydrolysis of cellulose," Energy, Elsevier, vol. 77(C), pages 19-24.
    6. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    7. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    8. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    9. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    10. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    11. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    12. Md Abu Helal & Nathaniel Anderson & Yu Wei & Matthew Thompson, 2023. "A Review of Biomass-to-Bioenergy Supply Chain Research Using Bibliometric Analysis and Visualization," Energies, MDPI, vol. 16(3), pages 1-32, January.
    13. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    14. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    15. Escobar, Neus & Manrique-de-Lara-Peñate, Casiano & Sanjuán, Neus & Clemente, Gabriela & Rozakis, Stelios, 2017. "An agro-industrial model for the optimization of biodiesel production in Spain to meet the European GHG reduction targets," Energy, Elsevier, vol. 120(C), pages 619-631.
    16. Ujor, Victor & Bharathidasan, Ashok Kumar & Cornish, Katrina & Ezeji, Thaddeus Chukwuemeka, 2014. "Feasibility of producing butanol from industrial starchy food wastes," Applied Energy, Elsevier, vol. 136(C), pages 590-598.
    17. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Merola, Simona Silvia & Valentino, Gerardo & Tornatore, Cinzia & Marchitto, Luca, 2013. "In-cylinder spectroscopic measurements of knocking combustion in a SI engine fuelled with butanol–gasoline blend," Energy, Elsevier, vol. 62(C), pages 150-161.
    19. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    20. Chen, Zheng & Liu, Jingping & Han, Zhiyu & Du, Biao & Liu, Yun & Lee, Chiafon, 2013. "Study on performance and emissions of a passenger-car diesel engine fueled with butanol–diesel blends," Energy, Elsevier, vol. 55(C), pages 638-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:61:y:2013:i:c:p:13-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.