IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v279y2023ics0360544223014573.html
   My bibliography  Save this article

Exploration of separate hydrolysis and fermentation and simultaneous saccharification and co-fermentation for acetone, butanol, and ethanol production from combined diluted acid with laccase pretreated Puerariae Slag in Clostridium beijerinckii ART44

Author

Listed:
  • Zhou, Zhiyou
  • Peng, Shuaiying
  • Jing, Yujie
  • Wei, Saijin
  • Zhang, Qinghua
  • Ding, Huanhuan
  • Li, Hanguang

Abstract

In this study, an efficient pretreatment technology was developed for the bioconversion of puerariae slag (PS) into biobutanol. To accelerate the enzymatic saccharification of PS, the method of dilute acid combined with laccase pretreatment (DALP) was performed. With this effort, the highest concentration of reducing sugar was 48.96 ± 1.69 g/L after enzymatic hydrolysis of the whole slurry pretreatment under the optimal condition. Subsequently, the highest butanol productivity (0.15 g/L/h) was obtained by the simultaneous saccharification and co-fermentation (SSCF), which was 114.29% higher than that of the separate hydrolysis and fermentation (SHF). Furthermore, the microstructural changes of PS after different pretreatment were initially investigated by FT-IR, and we found that the DALP method resulted in more severe damage during the pretreatment process, which could improve the efficiency of enzymatic saccharification. This study suggests that the DALP is an attainable and efficient pretreatment method for production of butanol in the SSCF process.

Suggested Citation

  • Zhou, Zhiyou & Peng, Shuaiying & Jing, Yujie & Wei, Saijin & Zhang, Qinghua & Ding, Huanhuan & Li, Hanguang, 2023. "Exploration of separate hydrolysis and fermentation and simultaneous saccharification and co-fermentation for acetone, butanol, and ethanol production from combined diluted acid with laccase pretreate," Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014573
    DOI: 10.1016/j.energy.2023.128063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Wei & Zhao, Zhangmin & Pan, Hepeng & Zhao, Lankun & Xu, Chuangao & Yu, Xiaobin, 2018. "Feasibility of butanol production from wheat starch wastewater by Clostridium acetobutylicum," Energy, Elsevier, vol. 154(C), pages 240-248.
    2. Han, S.-H. & Cho, D.H. & Kim, Y.H. & Shin, S.-J., 2013. "Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation," Energy, Elsevier, vol. 61(C), pages 13-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    2. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    3. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    4. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).
    5. Yoon, Su-Young & Kim, Byung-Ro & Han, Sim-Hee & Shin, Soo-Jeong, 2015. "Different response between woody core and bark of goat willow (Salix caprea L.) to concentrated phosphoric acid pretreatment followed by enzymatic saccharification," Energy, Elsevier, vol. 81(C), pages 21-26.
    6. Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
    7. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    8. Yoon, S.-Y. & Han, S.-H. & Shin, S.-J., 2014. "The effect of hemicelluloses and lignin on acid hydrolysis of cellulose," Energy, Elsevier, vol. 77(C), pages 19-24.
    9. Morsy, Fatthy Mohamed & Ibrahim, Samir Hag, 2016. "Concomitant hydrolysis of sucrose by the long half-life time yeast invertase and hydrogen production by the hydrogen over-producing Escherichia coli HD701," Energy, Elsevier, vol. 109(C), pages 412-419.
    10. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    11. Morsy, Fatthy Mohamed, 2015. "CO2-free biohydrogen production by mixed dark and photofermentation bacteria from sorghum starch using a modified simple purification and collection system," Energy, Elsevier, vol. 87(C), pages 594-604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.