IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v136y2014icp590-598.html
   My bibliography  Save this article

Feasibility of producing butanol from industrial starchy food wastes

Author

Listed:
  • Ujor, Victor
  • Bharathidasan, Ashok Kumar
  • Cornish, Katrina
  • Ezeji, Thaddeus Chukwuemeka

Abstract

To evaluate the feasibility of using industrial starchy food wastes as alternative feedstocks for fermentative production of butanol, 34 different food waste samples were obtained from 10 major Ohio food manufacturing companies. Of the food waste samples, 8 were characterized for acetone butanol ethanol (ABE) production. The food waste samples were characterized for moisture, total solids, ash, nitrogen, total organic carbon (TOC), pH, calorific value, minerals and starch content. Results showed that the pH of inedible dough and breadings was in the acceptable substrate pH range (pH 6.2–7.4) for culturing solventogenic Clostridium species, whereas the pH of batter liquid was 4.5, hence, adjusted to pH 6.5 with NH4OH prior to fermentation. Further, batch fermentations by Clostridium beijerinckii NCIMB 8052 using inedible dough, breadings, and batter liquid as substrates generated the following maximum ABE concentrations: 14.4, 14.8 and 15.1g/L ABE, respectively, which is comparable to the glucose control. Besides, the ABE yield from inedible dough and batter liquid was over 2% better than that of the glucose control. Collectively, these results demonstrate that industrial starchy food waste is a viable alternative substrate for butanol production.

Suggested Citation

  • Ujor, Victor & Bharathidasan, Ashok Kumar & Cornish, Katrina & Ezeji, Thaddeus Chukwuemeka, 2014. "Feasibility of producing butanol from industrial starchy food wastes," Applied Energy, Elsevier, vol. 136(C), pages 590-598.
  • Handle: RePEc:eee:appene:v:136:y:2014:i:c:p:590-598
    DOI: 10.1016/j.apenergy.2014.09.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191400988X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.09.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giakoumis, Evangelos G. & Dimaratos, Athanasios M. & Rakopoulos, Constantine D., 2011. "Experimental study of combustion noise radiation during transient turbocharged diesel engine operation," Energy, Elsevier, vol. 36(8), pages 4983-4995.
    2. Rakopoulos, C.D. & Dimaratos, A.M. & Giakoumis, E.G. & Rakopoulos, D.C., 2011. "Study of turbocharged diesel engine operation, pollutant emissions and combustion noise radiation during starting with bio-diesel or n-butanol diesel fuel blends," Applied Energy, Elsevier, vol. 88(11), pages 3905-3916.
    3. Tornatore, Cinzia & Marchitto, Luca & Valentino, Gerardo & Esposito Corcione, Felice & Merola, Simona Silvia, 2012. "Optical diagnostics of the combustion process in a PFI SI boosted engine fueled with butanol–gasoline blend," Energy, Elsevier, vol. 45(1), pages 277-287.
    4. Kevin D Hall & Juen Guo & Michael Dore & Carson C Chow, 2009. "The Progressive Increase of Food Waste in America and Its Environmental Impact," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-6, November.
    5. Jeanty, P. Wilner & Warren, Dave & Hitzhusen, Fred, 2004. "Assessing Ohio's Biomass Resources for Energy Potential Using GIS," MPRA Paper 22990, University Library of Munich, Germany.
    6. Venkat, Kumar, 2012. "The Climate Change and Economic Impacts of Food Waste in the United States," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 2(4), pages 1-16, April.
    7. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shah, A.T. & Favaro, L. & Alibardi, L. & Cagnin, L. & Sandon, A. & Cossu, R. & Casella, S. & Basaglia, M., 2016. "Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste," Applied Energy, Elsevier, vol. 176(C), pages 116-124.
    2. Liu, Yueling & Feng, Kai & Li, Huan, 2019. "Rapid conversion from food waste to electricity by combining anaerobic fermentation and liquid catalytic fuel cell," Applied Energy, Elsevier, vol. 233, pages 395-402.
    3. Pereira, L.G. & Dias, M.O.S. & Mariano, A.P. & Maciel Filho, R. & Bonomi, A., 2015. "Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: Fermentative versus catalytic routes," Applied Energy, Elsevier, vol. 160(C), pages 120-131.
    4. Liu, Jingyun & Fan, Senqing & Bai, Ke & Xiao, Zeyi, 2021. "Combining acetone-butanol-ethanol production and methyl orange decolorization in wastewater by fermentation with solid food waste as substrate," Renewable Energy, Elsevier, vol. 179(C), pages 2246-2255.
    5. KS Rajmohan & C Ramya & Sunita Varjani, 2021. "Trends and advances in bioenergy production and sustainable solid waste management," Energy & Environment, , vol. 32(6), pages 1059-1085, September.
    6. Su, Guandong & Chan, Claire & He, Jianzhong, 2022. "Enhanced biobutanol production from starch waste via orange peel doping," Renewable Energy, Elsevier, vol. 193(C), pages 576-583.
    7. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    8. Hegde, Swati & Lodge, Jeffery S. & Trabold, Thomas A., 2018. "Characteristics of food processing wastes and their use in sustainable alcohol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 510-523.
    9. Xiaona Wang & Haishu Sun & Yonglin Wang & Fangxia Wang & Wenbin Zhu & Chuanfu Wu & Qunhui Wang & Ming Gao, 2023. "Feasibility of Efficient, Direct, Butanol Production from Food Waste without Nutrient Supplement by Clostridium saccharoperbutylacetonicum N1-4," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    10. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Mao-Bin & He, Bang-Quan & Zhao, Hua, 2015. "Effect of air dilution and effective compression ratio on the combustion characteristics of a HCCI (homogeneous charge compression ignition) engine fuelled with n-butanol," Energy, Elsevier, vol. 85(C), pages 296-303.
    2. Cheng, Chieh-Lun & Che, Pei-Yi & Chen, Bor-Yann & Lee, Wen-Jhy & Lin, Chiu-Yue & Chang, Jo-Shu, 2012. "Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora," Applied Energy, Elsevier, vol. 100(C), pages 3-9.
    3. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    4. Tian, Zhen-Yu & Chafik, Tarik & Assebban, Mhamed & Harti, Sanae & Bahlawane, Naoufal & Mountapmbeme Kouotou, Patrick & Kohse-Höinghaus, Katharina, 2013. "Towards biofuel combustion with an easily extruded clay as a natural catalyst," Applied Energy, Elsevier, vol. 107(C), pages 149-156.
    5. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    6. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    7. Liu, Haifeng & Li, Shanju & Zheng, Zunqing & Xu, Jia & Yao, Mingfa, 2013. "Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates," Applied Energy, Elsevier, vol. 112(C), pages 246-256.
    8. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    9. Wu, Shaohua & Akroyd, Jethro & Mosbach, Sebastian & Brownbridge, George & Parry, Owen & Page, Vivian & Yang, Wenming & Kraft, Markus, 2020. "Efficient simulation and auto-calibration of soot particle processes in Diesel engines," Applied Energy, Elsevier, vol. 262(C).
    10. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    11. Giakoumis, Evangelos G. & Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D., 2016. "Combustion noise radiation during dynamic diesel engine operation including effects of various biofuel blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1099-1113.
    12. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.
    13. Hua, Yang & Qian, Yejian & Meng, Shun, 2023. "PAH laser diagnostics and soot particle dynamics in gasoline co-flow flames doped with n-butanol," Energy, Elsevier, vol. 272(C).
    14. Kumar, Satish & Cho, Jae Hyun & Park, Jaedeuk & Moon, Il, 2013. "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 46-72.
    15. Nemat Keramat Siavash & Golamhassan Najafi & Sayed Reza Hassan-Beygi & Hossain Ahmadian & Barat Ghobadian & Talal Yusaf & Mohammed Mazlan, 2021. "Time–Frequency Analysis of Diesel Engine Noise Using Biodiesel Fuel Blends," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    16. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    17. Chang, Yu-Cheng & Lee, Wen-Jhy & Lin, Sheng-Lun & Wang, Lin-Chi, 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines," Applied Energy, Elsevier, vol. 109(C), pages 182-191.
    18. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, İdris & Koksal, Sakip, 2015. "Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions," Energy, Elsevier, vol. 93(P1), pages 795-800.
    19. Atmanli, Alpaslan & Ileri, Erol & Yilmaz, Nadir, 2016. "Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters," Energy, Elsevier, vol. 96(C), pages 569-580.
    20. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Raghavan, V. & Saravanan, C.G. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine," Applied Energy, Elsevier, vol. 115(C), pages 514-524.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:136:y:2014:i:c:p:590-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.