IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i5p2309-2316.html
   My bibliography  Save this article

Constructing low emitting power systems through grid extension in Papua New Guinea (PNG) with rural electrification

Author

Listed:
  • Nagai, Y.
  • Yamamoto, H.
  • Yamaji, K.

Abstract

The effective rural electrification method varies with economic status and geographical location, and the benefits of decentralized generation differ for each energy system depending on its characteristics. This paper evaluates the most effective generation strategies with rural electrification in an optimized power system of Papua New Guinea (PNG) using a linear programming model. The energy system model developed for the study includes decentralized generation, centralized generation, and grid systems of electricity and gas with consideration for the current energy system and infrastructure. Two methods of rural electrification, decentralized generation and grid extension, are compared with and without the Clean Development Mechanism (CDM). The results of simulations show that extending the power grid that allows economical generation such as coal-fired power and hydropower to supply rural electricity is a more cost effective way for rural electrification. Although grid extension is more capital intensive than decentralized generation, the former reduces the total system cost through reduction of the fossil fuel use. Extending the power grid is also effective at attracting CDM investments, since it makes the power system flexible and provides opportunities to advance low emitting energy such as hydropower.

Suggested Citation

  • Nagai, Y. & Yamamoto, H. & Yamaji, K., 2010. "Constructing low emitting power systems through grid extension in Papua New Guinea (PNG) with rural electrification," Energy, Elsevier, vol. 35(5), pages 2309-2316.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2309-2316
    DOI: 10.1016/j.energy.2010.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210000757
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soontornrangson, W. & Evans, D. G. & Fuller, R. J. & Stewart, D. F., 2003. "Scenario planning for electricity supply," Energy Policy, Elsevier, vol. 31(15), pages 1647-1659, December.
    2. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2009. "Providing electricity access to remote areas in India: Niche areas for decentralized electricity supply," Renewable Energy, Elsevier, vol. 34(2), pages 430-434.
    3. Cep, 1992. "Annual Report 91-92," CEP Discussion Papers dp0107, Centre for Economic Performance, LSE.
    4. Rachmatullah, C. & Aye, Lu & Fuller, R.J., 2007. "Scenario planning for the electricity generation in Indonesia," Energy Policy, Elsevier, vol. 35(4), pages 2352-2359, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brown, Alistair, 2016. "The need for improved financial reporting of a developing country energy utility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1448-1454.
    2. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Sovacool, Benjamin K. & D'Agostino, Anthony L. & Jain Bambawale, Malavika, 2011. "The socio-technical barriers to Solar Home Systems (SHS) in Papua New Guinea: "Choosing pigs, prostitutes, and poker chips over panels"," Energy Policy, Elsevier, vol. 39(3), pages 1532-1542, March.
    4. Nerini, Francesco Fuso & Broad, Oliver & Mentis, Dimitris & Welsch, Manuel & Bazilian, Morgan & Howells, Mark, 2016. "A cost comparison of technology approaches for improving access to electricity services," Energy, Elsevier, vol. 95(C), pages 255-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    2. Niranjan Rao Deevela & Bhim Singh & Tara C. Kandpal, 2021. "Techno-economics of solar PV array-based hybrid systems for powering telecom towers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 17003-17029, November.
    3. Morgan Bazilian & Patrick Nussbaumer & Hans-Holger Rogner & Abeeku Brew-Hammond & Vivien Foster & Shonali Pachauri & Eric Williams & Mark Howells & Philippe Niyongabo & Lawrence Musaba & Brian Ó Galla, 2011. "Energy Access Scenarios to 2030 for the Power Sector in Sub-Saharan Africa," Working Papers 2011.68, Fondazione Eni Enrico Mattei.
    4. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    5. Laws, Nicholas D. & Anderson, Kate & DiOrio, Nicholas A. & Li, Xiangkun & McLaren, Joyce, 2018. "Impacts of valuing resilience on cost-optimal PV and storage systems for commercial buildings," Renewable Energy, Elsevier, vol. 127(C), pages 896-909.
    6. Jain, Sanjay V. & Patel, Rajesh N., 2014. "Investigations on pump running in turbine mode: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 841-868.
    7. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    8. Levin, Todd & Thomas, Valerie M., 2012. "Least-cost network evaluation of centralized and decentralized contributions to global electrification," Energy Policy, Elsevier, vol. 41(C), pages 286-302.
    9. Molyneaux, Lynette & Wagner, Liam & Foster, John, 2016. "Rural electrification in India: Galilee Basin coal versus decentralised renewable energy micro grids," Renewable Energy, Elsevier, vol. 89(C), pages 422-436.
    10. Bracken, L.J. & Bulkeley, H.A. & Maynard, C.M., 2014. "Micro-hydro power in the UK: The role of communities in an emerging energy resource," Energy Policy, Elsevier, vol. 68(C), pages 92-101.
    11. Nygaard, Kaleb, 2021. "Finland's 1992 Capital Injection," Journal of Financial Crises, Yale Program on Financial Stability (YPFS), vol. 3(3), pages 47-63, April.
    12. Deendarlianto, & Widyaparaga, Adhika & Sopha, Bertha Maya & Budiman, Arief & Muthohar, Imam & Setiawan, Indra Chandra & Lindasista, Alia & Soemardjito, Joewono & Oka, Kazutaka, 2017. "Scenarios analysis of energy mix for road transportation sector in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 13-23.
    13. George Owusu-Antwi & Rachna Banerjee & James Antwi, 2017. "Interest Rate Spread on Bank Profitability: The Case of Ghanaian Banks," Journal of Accounting, Business and Finance Research, Scientific Publishing Institute, vol. 1(1), pages 34-45.
    14. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    15. Turner, Graham M. & West, James, 2012. "Environmental implications of electricity generation in an integrated long-term planning framework," Energy Policy, Elsevier, vol. 41(C), pages 316-332.
    16. Elhadidy, M.a & Shaahid, S.M, 1999. "Optimal sizing of battery storage for hybrid (wind+diesel) power systems," Renewable Energy, Elsevier, vol. 18(1), pages 77-86.
    17. Purwanto, Widodo Wahyu & Pratama, Yoga Wienda & Nugroho, Yulianto Sulistyo & Warjito, & Hertono, Gatot Fatwanto & Hartono, Djoni & Deendarlianto, & Tezuka, Tetsuo, 2015. "Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources," Renewable Energy, Elsevier, vol. 81(C), pages 308-318.
    18. Beccali, Marco & Cellura, Maurizio & Mistretta, Marina, 2007. "Environmental effects of energy policy in sicily: The role of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 282-298, February.
    19. Sholpan Smagulova & Amangeldi D. Omarov & Aybek B. Imashev, 2015. "The Value of Investment Resources Influx for the Development of the Electric Power Industry of Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 374-384.
    20. Narula, Kapil & Nagai, Yu & Pachauri, Shonali, 2012. "The role of Decentralized Distributed Generation in achieving universal rural electrification in South Asia by 2030," Energy Policy, Elsevier, vol. 47(C), pages 345-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2309-2316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.