Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2010.06.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salman Khalid & Jinwoo Song & Izaz Raouf & Heung Soo Kim, 2023. "Advances in Fault Detection and Diagnosis for Thermal Power Plants: A Review of Intelligent Techniques," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
- Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
- Huang, Bo & Peng, Yun-Hong & Hu, Li-Sheng & Liang, Xiao-Chi, 2024. "Incipient fault detection approach based on piecewise linear shape-based global embedding for steam turbine plants," Applied Energy, Elsevier, vol. 370(C).
- Strušnik, Dušan & Avsec, Jurij, 2015. "Artificial neural networking and fuzzy logic exergy controlling model of combined heat and power system in thermal power plant," Energy, Elsevier, vol. 80(C), pages 318-330.
- Guo, Sisi & Liu, Pei & Li, Zheng, 2018. "Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation," Energy, Elsevier, vol. 151(C), pages 203-210.
- Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2011. "Modeling and optimization of a utility system containing multiple extractions steam turbines," Energy, Elsevier, vol. 36(5), pages 3501-3512.
- Pedro Santos & Jesús Maudes & Andres Bustillo, 2018. "Identifying maximum imbalance in datasets for fault diagnosis of gearboxes," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 333-351, February.
- Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
- Morshedizadeh, Majid & Kordestani, Mojtaba & Carriveau, Rupp & Ting, David S.-K. & Saif, Mehrdad, 2017. "Application of imputation techniques and Adaptive Neuro-Fuzzy Inference System to predict wind turbine power production," Energy, Elsevier, vol. 138(C), pages 394-404.
- Yang, Jaemin & Kim, Jonghyun, 2020. "Accident diagnosis algorithm with untrained accident identification during power-increasing operation," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Yaïci, Wahiba & Entchev, Evgueniy, 2016. "Adaptive Neuro-Fuzzy Inference System modelling for performance prediction of solar thermal energy system," Renewable Energy, Elsevier, vol. 86(C), pages 302-315.
- Kumar, Manoj & Behera, Suraj K. & Kumar, Amitesh & Sahoo, Ranjit K., 2019. "Numerical and experimental investigation to visualize the fluid flow and thermal characteristics of a cryogenic turboexpander," Energy, Elsevier, vol. 189(C).
- Jungwon Yu & Jaeyel Jang & Jaeyeong Yoo & June Ho Park & Sungshin Kim, 2018. "A Fault Isolation Method via Classification and Regression Tree-Based Variable Ranking for Drum-Type Steam Boiler in Thermal Power Plant," Energies, MDPI, vol. 11(5), pages 1-19, May.
- Hu, Pengfei & Cao, Lihua & Su, Jingkai & Li, Qi & Li, Yong, 2020. "Distribution characteristics of salt-out particles in steam turbine stage," Energy, Elsevier, vol. 192(C).
- Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
- Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.
- Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
- Brkovic, Aleksandar & Gajic, Dragoljub & Gligorijevic, Jovan & Savic-Gajic, Ivana & Georgieva, Olga & Di Gennaro, Stefano, 2017. "Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery," Energy, Elsevier, vol. 136(C), pages 63-71.
- Sun, Rongzhuo & Shi, Licheng & Yang, Xilian & Wang, Yuzhang & Zhao, Qunfei, 2020. "A coupling diagnosis method of sensors faults in gas turbine control system," Energy, Elsevier, vol. 205(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
- Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
- Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
- Helder Sebastião & Pedro Godinho & Sjur Westgaard, 2020.
"Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures,"
Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 67(si), pages 1-17, December.
- Helder Sebastião & Pedro Godinho & Sjur Westgaard, 2020. "Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 67(4), pages 1-17, December.
- Hong-Yu Lin & Kuentai Chen, 2015. "The Trend of Average Unit Price in Taipei City," Research in World Economy, Research in World Economy, Sciedu Press, vol. 6(1), pages 133-142, March.
- Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
- Wei-Chiang Hong & Yucheng Dong & Chien-Yuan Lai & Li-Yueh Chen & Shih-Yung Wei, 2011. "SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting," Energies, MDPI, vol. 4(6), pages 1-18, June.
- Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020.
"Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid,"
Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
- Lux, Marius & Härdle, Wolfgang Karl & Lessmann, Stefan, 2018. "Data Driven Value-at-Risk Forecasting using a SVR-GARCH-KDE Hybrid," IRTG 1792 Discussion Papers 2018-001, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Georgi Nalbantov & Philip Hans Franses & Patrick Groenen & Jan Bioch, 2010.
"Estimating the Market Share Attraction Model using Support Vector Regressions,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 688-716.
- Nalbantov, G.I. & Franses, Ph.H.B.F. & Bioch, J.C. & Groenen, P.J.F., 2007. "Estimating the market share attraction model using support vector regressions," Econometric Institute Research Papers EI 2007-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- T. Law & J. Shawe-Taylor, 2017. "Practical Bayesian support vector regression for financial time series prediction and market condition change detection," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1403-1416, September.
- Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
- Hyejung Chung & Kyung-shik Shin, 2018. "Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
- Ślepaczuk Robert & Zenkova Maryna, 2018.
"Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market,"
Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
- Maryna Zenkova & Robert Ślepaczuk, 2019. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Working Papers 2019-02, Faculty of Economic Sciences, University of Warsaw.
- Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
- N. Loukeris & I. Eleftheriadis & E. Livanis, 2016. "The Portfolio Heuristic Optimisation System (PHOS)," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 627-648, December.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023.
"A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting,"
Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working Papers 202056, University of Pretoria, Department of Economics.
- Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2020. "Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Working papers 2020-10, University of Connecticut, Department of Economics.
- Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
- Alexandros Agapitos & Anthony Brabazon & Michael O’Neill, 2017. "Regularised gradient boosting for financial time-series modelling," Computational Management Science, Springer, vol. 14(3), pages 367-391, July.
- Mogens Graf Plessen & Alberto Bemporad, 2017. "A posteriori multi-stage optimal trading under transaction costs and a diversification constraint," Papers 1709.07527, arXiv.org, revised Apr 2018.
- Phichhang Ou & Hengshan Wang, 2009. "Prediction of Stock Market Index Movement by Ten Data Mining Techniques," Modern Applied Science, Canadian Center of Science and Education, vol. 3(12), pages 1-28, December.
More about this item
Keywords
ANFIS; SVM; OWA; Fusion; Fault diagnosis; Steam turbine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5472-5482. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.