IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v17y2017i9p1403-1416.html
   My bibliography  Save this article

Practical Bayesian support vector regression for financial time series prediction and market condition change detection

Author

Listed:
  • T. Law
  • J. Shawe-Taylor

Abstract

Support vector regression (SVR) has long been proven to be a successful tool to predict financial time series. The core idea of this study is to outline an automated framework for achieving a faster and easier parameter selection process, and at the same time, generating useful prediction uncertainty estimates in order to effectively tackle flexible real-world financial time series prediction problems. A Bayesian approach to SVR is discussed, and implemented. It is found that the direct implementation of the probabilistic framework of Gao et al. returns unsatisfactory results in our experiments. A novel enhancement is proposed by adding a new kernel scaling parameter μ$ \mu $ to overcome the difficulties encountered. In addition, the multi-armed bandit Bayesian optimization technique is applied to automate the parameter selection process. Our framework is then tested on financial time series of various asset classes (i.e. equity index, credit default swaps spread, bond yields, and commodity futures) to ensure its flexibility. It is shown that the generalization performance of this parameter selection process can reach or sometimes surpass the computationally expensive cross-validation procedure. An adaptive calibration process is also described to allow practical use of the prediction uncertainty estimates to assess the quality of predictions. It is shown that the machine-learning approach discussed in this study can be developed as a very useful pricing tool, and potentially a market condition change detector. A further extension is possible by taking the prediction uncertainties into consideration when building a financial portfolio.

Suggested Citation

  • T. Law & J. Shawe-Taylor, 2017. "Practical Bayesian support vector regression for financial time series prediction and market condition change detection," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1403-1416, September.
  • Handle: RePEc:taf:quantf:v:17:y:2017:i:9:p:1403-1416
    DOI: 10.1080/14697688.2016.1267868
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1267868
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1267868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven L. Scott, 2010. "A modern Bayesian look at the multi‐armed bandit," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(6), pages 639-658, November.
    2. Yalin Gündüz & Marliese Uhrig-Homburg, 2011. "Predicting credit default swap prices with financial and pure data-driven approaches," Quantitative Finance, Taylor & Francis Journals, vol. 11(12), pages 1709-1727.
    3. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    4. Daniel Russo & Benjamin Van Roy, 2014. "Learning to Optimize via Posterior Sampling," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1221-1243, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    2. Flavio Barboza & Geraldo Nunes Silva & José Augusto Fiorucci, 2023. "A review of artificial intelligence quality in forecasting asset prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1708-1728, November.
    3. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    4. Özer Depren & Mustafa Tevfik Kartal & Serpil Kılıç Depren, 2021. "Recent innovation in benchmark rates (BMR): evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.
    5. Haoyuan, Shen & Yizhong, Ma & Chenglong, Lin & Jian, Zhou & Lijun, Liu, 2023. "Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Kulshrestha, Anurag & Krishnaswamy, Venkataraghavan & Sharma, Mayank, 2020. "Bayesian BILSTM approach for tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 83(C).
    7. Auh, Jun Kyung & Cho, Wonho, 2023. "Factor-based portfolio optimization," Economics Letters, Elsevier, vol. 228(C).
    8. Depren, Özer & Kartal, Mustafa Tevfik & Kılıç Depren, Serpil, 2021. "Changes of gold prices in COVID-19 pandemic: Daily evidence from Turkey's monetary policy measures with selected determinants," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    9. Hector O. Zapata & Supratik Mukhopadhyay, 2022. "A Bibliometric Analysis of Machine Learning Econometrics in Asset Pricing," JRFM, MDPI, vol. 15(11), pages 1-17, November.
    10. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Joel Ong & Dorien Herremans, 2023. "Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning," Papers 2306.13661, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Dimakopoulou & Zhimei Ren & Zhengyuan Zhou, 2021. "Online Multi-Armed Bandits with Adaptive Inference," Papers 2102.13202, arXiv.org, revised Jun 2021.
    2. Po-Yi Liu & Chi-Hua Wang & Henghsiu Tsai, 2022. "Non-Stationary Dynamic Pricing Via Actor-Critic Information-Directed Pricing," Papers 2208.09372, arXiv.org, revised Sep 2022.
    3. Sareh Nabi & Houssam Nassif & Joseph Hong & Hamed Mamani & Guido Imbens, 2022. "Bayesian Meta-Prior Learning Using Empirical Bayes," Management Science, INFORMS, vol. 68(3), pages 1737-1755, March.
    4. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
    5. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    6. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    7. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org.
    8. Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
    9. David Simchi-Levi & Rui Sun & Huanan Zhang, 2022. "Online Learning and Optimization for Revenue Management Problems with Add-on Discounts," Management Science, INFORMS, vol. 68(10), pages 7402-7421, October.
    10. Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
    11. Hamsa Bastani & David Simchi-Levi & Ruihao Zhu, 2022. "Meta Dynamic Pricing: Transfer Learning Across Experiments," Management Science, INFORMS, vol. 68(3), pages 1865-1881, March.
    12. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    13. Rong Jin & David Simchi-Levi & Li Wang & Xinshang Wang & Sen Yang, 2021. "Shrinking the Upper Confidence Bound: A Dynamic Product Selection Problem for Urban Warehouses," Management Science, INFORMS, vol. 67(8), pages 4756-4771, August.
    14. Kohei Kawaguchi, 2021. "When Will Workers Follow an Algorithm? A Field Experiment with a Retail Business," Management Science, INFORMS, vol. 67(3), pages 1670-1695, March.
    15. Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Shami & Alexander Teytelboym, 2020. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," CESifo Working Paper Series 8535, CESifo.
    16. Helder Sebastião & Pedro Godinho & Sjur Westgaard, 2020. "Using Machine Learning to Profit on the Risk Premium of the Nordic Electricity Futures," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 67(4), pages 1-17, December.
    17. Hong-Yu Lin & Kuentai Chen, 2015. "The Trend of Average Unit Price in Taipei City," Research in World Economy, Research in World Economy, Sciedu Press, vol. 6(1), pages 133-142, March.
    18. Gui Liberali & Alina Ferecatu, 2022. "Morphing for Consumer Dynamics: Bandits Meet Hidden Markov Models," Marketing Science, INFORMS, vol. 41(4), pages 769-794, July.
    19. Xiangyu Gao & Stefanus Jasin & Sajjad Najafi & Huanan Zhang, 2022. "Joint Learning and Optimization for Multi-Product Pricing (and Ranking) Under a General Cascade Click Model," Management Science, INFORMS, vol. 68(10), pages 7362-7382, October.
    20. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:17:y:2017:i:9:p:1403-1416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.