IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.13661.html
   My bibliography  Save this paper

Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning

Author

Listed:
  • Joel Ong
  • Dorien Herremans

Abstract

A diversified risk-adjusted time-series momentum (TSMOM) portfolio can deliver substantial abnormal returns and offer some degree of tail risk protection during extreme market events. The performance of existing TSMOM strategies, however, relies not only on the quality of the momentum signal but also on the efficacy of the volatility estimator. Yet many of the existing studies have always considered these two factors to be independent. Inspired by recent progress in Multi-Task Learning (MTL), we present a new approach using MTL in a deep neural network architecture that jointly learns portfolio construction and various auxiliary tasks related to volatility, such as forecasting realized volatility as measured by different volatility estimators. Through backtesting from January 2000 to December 2020 on a diversified portfolio of continuous futures contracts, we demonstrate that even after accounting for transaction costs of up to 3 basis points, our approach outperforms existing TSMOM strategies. Moreover, experiments confirm that adding auxiliary tasks indeed boosts the portfolio's performance. These findings demonstrate that MTL can be a powerful tool in finance.

Suggested Citation

  • Joel Ong & Dorien Herremans, 2023. "Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning," Papers 2306.13661, arXiv.org.
  • Handle: RePEc:arx:papers:2306.13661
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.13661
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    3. Kieran Wood & Sven Giegerich & Stephen Roberts & Stefan Zohren, 2021. "Trading with the Momentum Transformer: An Intelligent and Interpretable Architecture," Papers 2112.08534, arXiv.org, revised Nov 2022.
    4. T. Law & J. Shawe-Taylor, 2017. "Practical Bayesian support vector regression for financial time series prediction and market condition change detection," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1403-1416, September.
    5. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    6. Mazur, Mieszko & Dang, Man & Vega, Miguel, 2021. "COVID-19 and the march 2020 stock market crash. Evidence from S&P1500," Finance Research Letters, Elsevier, vol. 38(C).
    7. Narasimhan Jegadeesh & Sheridan Titman, 2001. "Profitability of Momentum Strategies: An Evaluation of Alternative Explanations," Journal of Finance, American Finance Association, vol. 56(2), pages 699-720, April.
    8. Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
    9. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    10. Yanzhao Zou & Dorien Herremans, 2022. "PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme price movement prediction of Bitcoin," Papers 2206.00648, arXiv.org, revised Oct 2023.
    11. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    12. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    13. Barroso, Pedro & Santa-Clara, Pedro, 2015. "Momentum has its moments," Journal of Financial Economics, Elsevier, vol. 116(1), pages 111-120.
    14. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joel Ong & Dorien Herremans, 2024. "DeepUnifiedMom: Unified Time-series Momentum Portfolio Construction via Multi-Task Learning with Multi-Gate Mixture of Experts," Papers 2406.08742, arXiv.org.
    2. Jakub Michańków & Paweł Sakowski & Robert Ślepaczuk, 2023. "Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices," Working Papers 2023-25, Faculty of Economic Sciences, University of Warsaw.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel Ong & Dorien Herremans, 2024. "DeepUnifiedMom: Unified Time-series Momentum Portfolio Construction via Multi-Task Learning with Multi-Gate Mixture of Experts," Papers 2406.08742, arXiv.org.
    2. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, February.
    3. Simarjeet Singh & Nidhi Walia, 2022. "Momentum investing: a systematic literature review and bibliometric analysis," Management Review Quarterly, Springer, vol. 72(1), pages 87-113, February.
    4. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    5. L. Lin & M. Schatz & D. Sornette, 2019. "A simple mechanism for financial bubbles: time-varying momentum horizon," Quantitative Finance, Taylor & Francis Journals, vol. 19(6), pages 937-959, June.
    6. Raza, Ahmad & Marshall, Ben R. & Visaltanachoti, Nuttawat, 2014. "Is there momentum or reversal in weekly currency returns?," Journal of International Money and Finance, Elsevier, vol. 45(C), pages 38-60.
    7. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    8. Jin Zhang & Yuxiu Zhang & Yongqi Dong, 2021. "A New Momentum Strategy Based on Chinese Securities Market," International Journal of Business and Management, Canadian Center of Science and Education, vol. 14(12), pages 1-90, July.
    9. Kim, Abby Y. & Tse, Yiuman & Wald, John K., 2016. "Time series momentum and volatility scaling," Journal of Financial Markets, Elsevier, vol. 30(C), pages 103-124.
    10. He, Xue-Zhong & Li, Kai, 2015. "Profitability of time series momentum," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 140-157.
    11. Ruzhen Yan & Ding Yue & Xu Wu & Wei Gao, 2023. "Multiscale Multifractal Detrended Fluctuation Analysis and Trend Identification of Liquidity in the China's Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 487-511, February.
    12. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    13. Crossland, Jarrod & Li, Bin & Roca, Eduardo, 2013. "Is the European Union Emissions Trading Scheme (EU ETS) informationally efficient? Evidence from momentum-based trading strategies," Applied Energy, Elsevier, vol. 109(C), pages 10-23.
    14. Shi, Huai-Long & Zhou, Wei-Xing, 2021. "Horse race of weekly idiosyncratic momentum strategies with respect to various risk metrics: Evidence from the Chinese stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    15. Gao, Yang & Leung, Henry & Satchell, Stephen, 2022. "Partial moment momentum," Journal of Banking & Finance, Elsevier, vol. 135(C).
    16. He, Xue-Zhong & Li, Youwei & Zheng, Min, 2019. "Heterogeneous agent models in financial markets: A nonlinear dynamics approach," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 135-149.
    17. Shi, Huai-Long & Zhou, Wei-Xing, 2017. "Time series momentum and contrarian effects in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 309-318.
    18. Sandrine Jacob Leal, 2015. "Fundamentalists, chartists and asset pricing anomalies," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1837-1850, November.
    19. Yang Gao & Henry Leung & Stephen Satchell, 2018. "A critique of momentum strategies," Journal of Asset Management, Palgrave Macmillan, vol. 19(5), pages 341-350, September.
    20. Ebert, Sebastian & Hilpert, Christian, 2019. "Skewness preference and the popularity of technical analysis," Journal of Banking & Finance, Elsevier, vol. 109(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.13661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.