IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp203-210.html
   My bibliography  Save this article

Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation

Author

Listed:
  • Guo, Sisi
  • Liu, Pei
  • Li, Zheng

Abstract

Wide-range and frequent operation changes have become a common phenomenon with thermal power plants in the context of fast penetration of intermittent renewable power. Performance monitoring at transient states is more important to the safety and high efficiency of power plants. Data quality is essential for conducting dynamic performance monitoring, and dynamic data reconciliation (DDR) provides great potential to enhance quality of measured data at transient states. In this paper, a moving window based approach to dynamic data reconciliation is proposed for a real coal-fired power plant using high sampling operational data. Firstly, dynamic characteristics of the system are discussed, taking account of the equipment accumulation in DDR problems. Results of case studies indicate that the data accuracy of measured mass flow parameters are enhanced effectively after DDR, and better results are obtained with the increasing time window size. Comparison with steady state data reconciliation approach is also carried out to indicate the enhanced effect of the DDR approach for the performance monitoring of a real power plant.

Suggested Citation

  • Guo, Sisi & Liu, Pei & Li, Zheng, 2018. "Enhancement of performance monitoring of a coal-fired power plant via dynamic data reconciliation," Energy, Elsevier, vol. 151(C), pages 203-210.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:203-210
    DOI: 10.1016/j.energy.2018.03.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Y.G. & Nilkitsaranont, P., 2009. "Gas turbine performance prognostic for condition-based maintenance," Applied Energy, Elsevier, vol. 86(10), pages 2152-2161, October.
    2. Vazquez, Luis & Blanco, Jesús María & Ramis, Rolando & Peña, Francisco & Diaz, David, 2015. "Robust methodology for steady state measurements estimation based framework for a reliable long term thermal power plant operation performance monitoring," Energy, Elsevier, vol. 93(P1), pages 923-944.
    3. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Data reconciliation for the overall thermal system of a steam turbine power plant," Applied Energy, Elsevier, vol. 165(C), pages 1037-1051.
    4. Fast, M. & Palmé, T., 2010. "Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant," Energy, Elsevier, vol. 35(2), pages 1114-1120.
    5. Salahshoor, Karim & Kordestani, Mojtaba & Khoshro, Majid S., 2010. "Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers," Energy, Elsevier, vol. 35(12), pages 5472-5482.
    6. Gu, Yujiong & Xu, Jing & Chen, Dongchao & Wang, Zhong & Li, Qianqian, 2016. "Overall review of peak shaving for coal-fired power units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 723-731.
    7. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.
    8. Finn, Joshua & Wagner, John & Bassily, Hany, 2010. "Monitoring strategies for a combined cycle electric power generator," Applied Energy, Elsevier, vol. 87(8), pages 2621-2627, August.
    9. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Inequality constrained nonlinear data reconciliation of a steam turbine power plant for enhanced parameter estimation," Energy, Elsevier, vol. 103(C), pages 215-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Jianxi & Han, Wenquan & Chen, Kang & Liu, Pei & Li, Zheng, 2022. "Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints," Energy, Elsevier, vol. 253(C).
    2. Szega, Marcin, 2018. "Issues of an optimization of measurements location in redundant measurements systems of an energy conversion process – A case study," Energy, Elsevier, vol. 165(PA), pages 1034-1047.
    3. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    5. Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
    6. Eslick, John C. & Zamarripa, Miguel A. & Ma, Jinliang & Wang, Maojian & Bhattacharya, Indrajit & Rychener, Brian & Pinkston, Philip & Bhattacharyya, Debangsu & Zitney, Stephen E. & Burgard, Anthony P., 2022. "Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application," Applied Energy, Elsevier, vol. 319(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Yu, Jianxi & Han, Wenquan & Chen, Kang & Liu, Pei & Li, Zheng, 2022. "Gross error detection in steam turbine measurements based on data reconciliation of inequality constraints," Energy, Elsevier, vol. 253(C).
    3. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.
    4. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    5. Yu, Jianxi & Petersen, Nils & Liu, Pei & Li, Zheng & Wirsum, Manfred, 2022. "Hybrid modelling and simulation of thermal systems of in-service power plants for digital twin development," Energy, Elsevier, vol. 260(C).
    6. Zhou, Dengji & Zhang, Huisheng & Weng, Shilie, 2014. "A novel prognostic model of performance degradation trend for power machinery maintenance," Energy, Elsevier, vol. 78(C), pages 740-746.
    7. Syed, Mohammed S. & Dooley, Kerry M. & Madron, Frantisek & Knopf, F. Carl, 2016. "Enhanced turbine monitoring using emissions measurements and data reconciliation," Applied Energy, Elsevier, vol. 173(C), pages 355-365.
    8. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2011. "Modeling and optimization of a utility system containing multiple extractions steam turbines," Energy, Elsevier, vol. 36(5), pages 3501-3512.
    9. Blanco, J.M. & Vazquez, L. & Peña, F. & Diaz, D., 2013. "New investigation on diagnosing steam production systems from multivariate time series applied to thermal power plants," Applied Energy, Elsevier, vol. 101(C), pages 589-599.
    10. Tsoutsanis, Elias & Meskin, Nader & Benammar, Mohieddine & Khorasani, Khashayar, 2016. "A dynamic prognosis scheme for flexible operation of gas turbines," Applied Energy, Elsevier, vol. 164(C), pages 686-701.
    11. Xu, Maojun & Liu, Jinxin & Li, Ming & Geng, Jia & Wu, Yun & Song, Zhiping, 2022. "Improved hybrid modeling method with input and output self-tuning for gas turbine engine," Energy, Elsevier, vol. 238(PA).
    12. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    13. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    14. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    15. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    16. Zhou, Dengji & Yu, Ziqiang & Zhang, Huisheng & Weng, Shilie, 2016. "A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation," Energy, Elsevier, vol. 109(C), pages 420-429.
    17. Huang, Chung-Neng & Chen, Yui-Sung, 2017. "Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles," Energy, Elsevier, vol. 118(C), pages 840-852.
    18. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
    19. Mingliang Bai & Jinfu Liu & Yujia Ma & Xinyu Zhao & Zhenhua Long & Daren Yu, 2020. "Long Short-Term Memory Network-Based Normal Pattern Group for Fault Detection of Three-Shaft Marine Gas Turbine," Energies, MDPI, vol. 14(1), pages 1-22, December.
    20. Ma, Ziming & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Jin, Liming, 2020. "Constraint relaxation-based day-ahead market mechanism design to promote the renewable energy accommodation," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:203-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.